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Abstract

Parallel software offers a promise of full utilisation of modern hardware.
Unfortunately, building a parallel program presents some additional
challenges for the programmers. In this thesis, we introduce some
improvements to the analysis of parallel C++ programs. In particular,
we aim to help with the discovery of hard-to-find bugs.

As our first contribution, we deal with some of the problems related
to analysis of high-level programming languages, including their ad-
vanced features and standard libraries. We consider this topic important
as comprehensive language support makes the analysis tool more usable
by programmers in practice. Comprehensive language support is not
an easy task. However, we show it is still manageable with the right
combination of reuse of existing execution-oriented components and
design of new, verification-oriented ones. In this work, we deal with
C++ support for the DIVINE verifier in general, and its support for
C++ exceptions in particular.

Our second contribution is a novel approach to the analysis of pro-
grams running under the relaxed memory model of Intel and AMD x86
processors. These processors can delay memory stores after independent
loads which can lead to peculiar behaviour of parallel programs. This
behaviour is often hard to keep track by programmers and therefore can
be a source of subtle bugs. We propose a novel way in which the verifier
can simulate relaxed memory. Our method aims to minimise introduced
nondeterminism and therefore increase the overall performance of the
verification.

As our last contribution, we introduce a method for checking local
nontermination of parallel programs, i.e., for detection of sections of
the program that are supposed to terminate but do not. The local
nontermination can be used to detect problems in programs that do
not terminate but have parts that must do so (e.g., a server might
have a function for handling a request, and this function must always
terminate). Our method uses lightweight annotations to mark parts
of the program which must terminate. It is not limited to the use
of particular synchronisation primitives, but it is only complete for
programs which have finite state space (such programs can have infinite
behaviour in which specific state is repeated infinitely). Even under
this limitation, we believe this technique can help with the design of
high-performance parallel algorithms and data structures.

The contributions presented in this thesis are implemented in an
open-source software model checker DIVINE and are accompanied by
experimental evaluation.
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1 Lightweight analysis tools
that try to find likely bugs.
They rely on approximation
and usually perform more
thorough analysis then com-
pilers do for warnings, but
still prefer speed and a low
number of spurious error
reports to the discovery of
hard-to-find bugs.

Chapter 1

Introduction

Our modern world depends on software in many aspects. In the morning,
software on our mobile phone can wake us up. Then we often travel
to work either by car or by public transport. In either case, there is
probably software in the vehicle, including life-critical software in engine
control and safety systems such as ABS (brakes anting-blocking system).
In work, many people use computers to do their job and to communicate
with coworkers and the rest of the world. In the meanwhile, our mobile
phone and the Internet accompanies us on almost every step. We also
use much infrastructure which can have important software components
in its control systems – including energy grids, smart traffic signs, and
flight control.

Any of this plethora of software system can contain bugs. These
bugs can range from minor ones that cause inconvenience only, to
safety-critical problems that can cause deaths of many people. For this
reason, ensuring software correctness is a desirable goal pursued by
software developers and testers, as well as researchers. Many techniques
provide assistance to both developers and testers, with a wide range
of capabilities and ease of use. At the basic level, developers can
leverage type system, especially if they use strongly statically typed
programming language, and they can use compiler warnings and linters1

to check for mistakes and potential problems in the code. Code is also
routinely tested with a large variety of test types, starting from unit
tests that test small parts of the program in isolation and continuing
to tests of functionality of the whole system.

These testing and code analysis techniques are wide-spread, can
discover significant amounts of bugs, and are often reasonably easy
to use for developers. However, these techniques cannot prove the
absence of bugs, and certain types of bugs are notoriously hard to
discover by these testing techniques. For example, testing parallel
software is inherently hard due to thread interactions which can cause
different executions of the same program (or function) to produce
different results. The program can run right in almost all cases, but can
occasionally fail, maybe once in a few minutes, maybe once in a few
months. A conventional approach to this problem is using stress testing.
For example, a thread-safe data structure might be stress tested by
performing millions of operations with it from many threads. Such
stress tests are designed to increase the likelihood of triggering a bug in
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2 Consider this code:
int x = 0;
int y = 0;

void t0() {
y = 1;
int a = x;

}

void t1() {
x = 1;
int b = y;

}
Where t0 and t1 are exe-
cuted by diffrent threads.
Intuitivelly we could ex-
pect that a = 0 ∧ b = 0
is not a possible outcome.
However, under the com-

mon x86 architecture,
this outcome can hap-

pen due to delayed stores.

3 The distinction between
testing and formal veri-
fication is not clear and
many techniques derived
from formal verification
are unable to prove cor-

rectness. This blurring is
further increased methods
like stateless model check-
ing that is also presented
under the name system-
atic concurrency testing.

[Bar+17] Baranová et al.,
“Model Checking of C and

C++ with DIVINE 4”.

[Roč20] Ročkai,
“DIVINE 4”.

the test, but they still cannot show its absence and can miss truly rare
bugs. Even worse, tests of parallel software are often nondeterministic
on buggy software, i.e., the same test of the same software version can
sometimes succeed and sometimes fail due to different interleaving of
threads in different executions. This behaviour might make bug fixing
extremely difficult. For example, a test may fail in a nightly automatic
build, and therefore the developers know there is a bug in the program,
but they are unable to reproduce the bug, and the test result might not
be sufficient to find what the bug is without reproducing it. Similarly,
it is hard to ensure by testing that a (parallel) program terminates
in all cases, or that it works correctly even on hardware with relaxed
memory (which can, for example, delay stores to the main memory).2

To make the discovery of hard-to-find bugs easier, many techniques
were proposed. These include both testing-based methods, such as
race detectors and thread sanitisers or record and replay debuggers,
and methods based on formal verification including theorem proving,
symbolic execution and various variants of model checking.3 In this work,
we will focus on methods with a more formal basis that are capable
of the discovery of hard-to-find bugs. However, for these methods to
be useful to programmers, they must not only be theoretically capable
of bug discovery, but they must also be reasonably convenient to use.
For example, it is highly desirable that the program analysis tool can
analyse the program directly, without the need to create a model of
the program that is to be analysed (many, especially older, techniques
for analysis of parallel programs require models). For this reason, we
will focus on analysis tools which work with realistic programs, i.e.,
programs written in high-level programming languages which can be
both executed on the desired platform and analysed without a separate
modelling step.

1.1 Problem Statements and Contributions

In this work, we will describe several techniques that improve analysis
of realistic parallel programs in the DIVINE model checker [Bar+17;
Roč20], and we will compare them to many other methods that aim at
the discovery of hard-to-find bugs in parallel programs. In our analysis,
we will focus primarily on programs written in C and C++. Neverthe-
less, analysis of other real-world high-level imperative programming
languages (such as Java, C#, Rust and many other) should follow
similar principles.

The work presented in this thesis is also accompanied by an open-
source implementation in DIVINE. At its core, DIVINE is an explicit-
state model checker extended with data abstraction capabilities. It can
be used to discover large classes of bugs, including assertion violations,
use of uninitialised memory, bad memory accesses, memory leaks, and
concurrency related bugs such as deadlocks.

1.1.1 Analysis of Realistic Programs

Analysis of realistic (parallel) programs is a hard task because these
programs have many features that are complex to handle by an analysis

http://dx.doi.org/10.1007/978-3-319-68167-2_14
http://dx.doi.org/10.1007/978-3-319-68167-2_14
https://divine.fi.muni.cz/
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tool. First, the syntax of the programming language is often complex
– modern programming languages such as C++, C#, Java or Python
are designed to be expressive and well usable by programmers and are
usually not easy to parse and process. Furthermore, the language can
have many features which are hard to analyse even when the code is un-
derstood. For example, dynamic memory complicates program analysis
because the amount of used memory and identifiers of memory locations
are not known beforehand. Pointer arithmetic and memory unsafety
of programming languages such as C and C++ further complicate the
handling of memory. Even procedure calls and recursion, which are
available in virtually any general-purpose programming language, make
some kinds of program analysis harder.

Realistic programming languages are also defined not only by the
language syntax and semantics but also by their libraries. The pro-
gramming language usually comes with a standard library that provides
basic abstractions and operations that most of the programmers will
expect to work. Program analysis tools must also understand these fea-
tures if the programmers are to use them. Even relatively minimalistic
standard libraries, such as the C standard library, contain features like
memory allocation and deallocation, basic string manipulations, math
operations, basic input and output (including basic filesystem access),
and since C11 also threads and their synchronisation. Most standard
libraries are even larger and more complex – they contain various data
structures, algorithms for working with them, and often abstractions
over filesystem and network access.

For a program analysis tool to be useful to programmers, it should
be able to process the code they are creating with minimal extra effort.
This means it must be able to handle complex language features and
libraries. For example, tools which understand basics of the C language,
but do not allow dynamic memory allocation, are not very useful for
programmers, as they will probably not be able to use them to analyse
their usual programs. On the other hand, if the language support is
good enough, it enables the programmer to use the analysis tool directly
on their program or its fragments, both during the development and
for older code.

Apart from the ease of use, program analysis without modelling or
simplification also increases the reliability of the analysis results – if the
analysed program differs from the program which is actually executed,
the difference can hide problems or introduce new, spurious bugs.

Our Contribution In Chapter 4 we present a wider look at the
problem of analysis of realistic programs from the point of features of
programming languages and their libraries. We show that library reuse
can be a viable approach for program analysers with good support
for language features and that it can significantly simplify support
for languages with complex libraries such as C++. We also identify
functionality which is a good candidate for verification-specific mod-
elling instead of reuse. Finally, we focus on the particular case of
exception support for C++ in DIVINE and how it can be achieved
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[Ram+13] Ramalho
et al., “SMT-Based

Bounded Model Check-
ing of C++ Programs”.

[GBHR20] Garzella et al.,
“Leveraging Compiler In-
termediate Representa-

tion for Multi- and Cross-
Language Verification”.

[Vis+03] Visser et al.,
“Model checking programs”.

[KT14] Kroening
et al., “CBMC – C

Bounded Model Checker”.

[CKS19] Cordeiro et
al., “JBMC: Bounded

Model Checking
for Java Bytecode”.

[ŠRB17] Štill et al., “Us-
ing Off-the-Shelf Excep-

tion Support Components
in C++ Verification”.

by a combination of library reuse and creation of verification-specific
libraries.

Other works focusing on language support in program analysis tools
include, for example, [Ram+13; GBHR20]. Exceptions are also sup-
ported in many Java tools and some tools with C++ support [Vis+03;
KT14; CKS19]. However, to the best of our knowledge, our support
of C++ exceptions is the only complete support for C++ exceptions
in a comparable tool. Furthermore, our method of implementation of
exceptions is rather generic and leverages existing language-specific
exception-handling code from C++ standard library implementation.
Therefore, it should be possible to adapt it to other programming
languages with exception support with reasonable effort.

This contribution was first presented in [ŠRB17]. Chapter 4 is
further extended with unpublished content about language support in
general.

1.1.2 Parallelism and Relaxed Memory

To fully utilise the capabilities of modern hardware, programmers are
encouraged to write parallel software. However, parallelism adds more
complexity both for the author of the code and for the analysis tool as it
has to be able to handle representation of threads and synchronisation in
the given programming language and the semantics of parallel execution
of the program. Furthermore, relaxed memory can come into play with
parallelism. Modern processors use cache memories and out-of-order
execution to improve their speed and hide speed difference between
the processor’s cores and the main memory. For efficiency reasons,
these mechanisms are often not transparent to the programmer and can
be observed by multi-threaded programs, yielding possible executions
that violate ordering of actions in their threads (for example, a write
to a memory can be delayed past an independent read). When this
behaviour is observable on a hardware platform, we say that the given
hardware platform has relaxed memory.

Relaxed memory adds substantial complexity to the program analy-
sis – an analysis tool has to be able to understand the particular relaxed
memory model (different platforms exhibit different behaviour) and
the amount of resources required to run the verification is also often
significantly increased. We believe that analysis under relaxed memory
models is an important topic, in particular in the context of lock-free
programs.

Our Contribution Chapter 5 shows how efficient support for the
memory model of the common Intel and AMD x86-64 processors was
added to the DIVINE verifier. In our work, we leverage the LLVM
infrastructure to implement support for relaxed memory as a prepro-
cessing step, without the need to modify the verifier itself (provided it
has support for nondeterministic choice). Furthermore, we show that
the amount of nondeterminism in the resulting program can be limited
by careful design of data structures used to simulate the behaviour of
x86-TSO store buffers. The decreased nondeterminism directly trans-

http://dx.doi.org/10.1109/ECBS.2013.15
http://dx.doi.org/10.1109/ECBS.2013.15
http://dx.doi.org/10.1109/ECBS.2013.15
http://dx.doi.org/10.1007/978-3-030-39322-9_5
http://dx.doi.org/10.1007/978-3-030-39322-9_5
http://dx.doi.org/10.1007/978-3-030-39322-9_5
http://dx.doi.org/10.1007/978-3-030-39322-9_5
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://dx.doi.org/10.1007/978-3-030-17502-3_17
http://dx.doi.org/10.1007/978-3-030-17502-3_17
http://dx.doi.org/10.1007/978-3-030-17502-3_17
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1109/QRS.2017.15
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[AKNT13] Alglave et al.,
“Software Verification for
Weak Memory via Program
Transformation”.

[ZKW15] Zhang et al., “Dy-
namic Partial Order Reduc-
tion for Relaxed Memory
Models”.

[Abd+17] Abdulla et al.,
“Stateless model checking
for TSO and PSO”.

[KLSV17] Kokologiannakis
et al., “Effective Stateless
Model Checking for C/C++
Concurrency”.

[AAJN18] Abdulla et al.,
“Optimal Stateless Model
Checking under the Release-
Acquire Semantics”.

[ŠB18] Štill et al., “Model
Checking of C++ Programs
Under the x86-TSO Mem-
ory Model”.

4 Safety checking aims to
show that the program
does not perform any for-
bidden action. Examples
include assertion safety
(absence of violation of
assertions – programmer
specified properties that
should hold at the given
point in the code), mem-
ory safety (which includes
correct access to arrays,
correct handling of dynamic
memory, and absence of
stack overflows), or absence
of use of undefined values
(in programming languages
such as C and C++ that
can work with uninitialised
memory).

[CC14] Cai et al., “Magi-
clock: Scalable Detection
of Potential Deadlocks in
Large-Scale Multithreaded
Programs”.

[Aga+10] Agarwal et al.,
“Detection of Deadlock
Potentials in Multithreaded
Programs”.

lates to smaller state space and therefore, faster and less memory-hungry
program analysis.

Analysis of programs under various relaxed memory models is an
active research area with a lot of related techniques, including [AKNT13;
ZKW15; Abd+17; KLSV17; AAJN18]. Our work, which was originally
presented in [ŠB18], presents a significant improvement over existing
explicit-state techniques and complements well techniques based on
bounded or stateless model checking.

1.1.3 Local Nontermination of Parallel Programs

An important part of the correctness of programs is that they eventually
do the work they are supposed to do. This implies the program should
terminate or, often in the case of parallel or event-driven programs,
that it should handle each request within a finite amount of time.
For example, a server is often running an infinite loop that spawns
request handlers, and each of these request handlers must terminate.
Similarly, a critical section of a program is usually required to terminate
to ensure the program does not get stuck. Lock-free programs can
sometimes rollback actions and it is important to check that the action
will eventually finish.

Therefore, termination checking (and more generally checking of
liveness properties) is an important companion to safety checking4

in the pursuit of correct parallel programs. Furthermore, it is often
not sufficient to check that the whole program terminates. It is more
desirable to check that some designated part of the program terminates
(e.g., critical section, event handler).

Our Contribution In Chapter 6, we introduce a generic method
for detection of nontermination caused by communication between
threads. It uses lightweight annotations in the code to mark parts of
the program that must terminate, together with a set of pre-defined
parts of programs that must terminate which allow it to be used with
common synchronisation primitives out of the box. Our method can
also be applied to deliberately nonterminating programs (i.e., daemons,
services) in which it can detect parts that should terminate but do not
terminate.

Termination of parallel programs is less explored than for the se-
quential case. Nevertheless, there are many existing works, including
specialized tools like [CC14; Aga+10; BH05] (which are specialized
to given synchronisation primitives) and [Cha+05; DIS99] (which can
detect global deadlocks). More general tools include those based on
modular proofs [CPR07; PR12] or loop detection [ABEL12]. Our work,
originally presented in [ŠB19], is based on state-space exploration and
focuses primarily on nontermination caused by thread communication –
it can handle arbitrary synchronization primitives but does not han-
dle symbolic data so far. Furthermore, one of its main novelties is
that it can detect nonterminating parts of programs with user-defined
granularity (e.g., a specified function or its part).

http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1007/s00236-016-0275-0
http://dx.doi.org/10.1007/s00236-016-0275-0
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3276505
http://dx.doi.org/10.1145/3276505
http://dx.doi.org/10.1145/3276505
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1109/TSE.2014.2301725
http://dx.doi.org/10.1109/TSE.2014.2301725
http://dx.doi.org/10.1109/TSE.2014.2301725
http://dx.doi.org/10.1109/TSE.2014.2301725
http://dx.doi.org/10.1109/TSE.2014.2301725
http://dx.doi.org/10.1147/JRD.2010.2060276
http://dx.doi.org/10.1147/JRD.2010.2060276
http://dx.doi.org/10.1147/JRD.2010.2060276
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[DIS99] Demartini et al., “A
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1.2 Supplementary Materials

Supplementary materials for this work can be found on vstill.eu/phd.
This web page contains links to the relevant publications this work is
based on and to their respective supplementary pages.

1.3 Thesis Structure

After this introduction, Chapter 2 gives the preliminaries need for
the rest of the work, including an introduction to program analysis,
parallelism and relaxed memory models, C++, and DIVINE. Chapter 3
presents state of the art in the program analysis of realistic parallel
programs. The next three chapters present the main contributions
of this work: analysis of realistic programs and C++ exceptions in
Chapter 4, support for the x86-TSO memory model in Chapter 5, and
nontermination detection in Chapter 6. Chapter 7 then concludes the
main body of this work.

The list of my published results can be found in Appendix A.
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Chapter 2

Preliminaries

This chapter gives an introduction to program analysis, parallel pro-
grams, and relaxed memory models. We will also introduce the C++
programming language as it is the language we are primarily targeting
and the DIVINE model checker as all the contributions are implemented
in DIVINE.

2.1 Program Analysis

We will not be concerned with simple program analysis techniques
like type-checkers and linters. Instead, we will focus on techniques
based on formal verification, that is techniques which can provide
some formally described guarantees about the program if they succeed.
These techniques usually require a program and some specification the
program should adhere to and can check if that is the case. We will also
focus mostly on techniques which can be directly applied to programs
written in some mainstream programming language (i.e., techniques
which do not require special verification-oriented languages as their
inputs).

Program analysis techniques can be broadly divided into two dif-
ferent areas, automatic techniques that, provided a program and its
specification, should produce a result automatically without further
assistance, and human-assisted techniques which require a substantial
human effort during the analysis. Examples of the first area are sym-
bolic execution and various model checking techniques, while theorem
provers are an example of the latter kind. As we focus on techniques
that should be usable by programmers without a substantial background
in formal logic, we will focus on the automatic tools.

2.1.1 State Space

To be able to define program properties that should be checked and
to describe various analysis methods, we first need to define the state
space of a program.

Definition 2.1: State Space
The state space of a program is a directed multigraph with (optionally)
labelled edges that describes all the ways in which the program can
be executed. The vertices of the state space multigraph are called
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1 For example, consider
the following state space:

A corresponding reduced
state space might be:

Another possibility is:

[Pel93] Peled, “All from one,
one for all: on model check-
ing using representatives”.

[FG05] Flanagan et al.,
“Dynamic Partial-order

Reduction for Model
Checking Software”.

[RBB13] Ročkai et al., “Im-
proved State Space Reduc-
tions for LTL Model Check-
ing of C & C++ Programs”.

states (of the program). Each state represents a certain point in the
execution of the program – it can be described by a snapshot of the
program (its memory, program counters and stacks of all its threads,
. . . ). States v1, v2 are connected by an edge in the state space if v2
can be reached from v1 by a single step of the program. The edge can
be optionally labelled, for example by the statements executed in each
step, or by selected actions specified by the program or verification
tool (such as error label to indicate an error occurs on this edge or an
accepting label that can be used in the automata-based approach to
LTL model checking). The state space contains all the states of the
program reachable from an initial state (an initial configuration of the
program).

The input for the analysis is usually not the state space graph.
Typically, the state space is specified by its implicit representation – the
program code, or possibly a function that describes the initial states
and how to get from one state to its successors.

In practice, the state space of a program can be very large or infinite,
and it is useful to be able to consider only a representative part of the
state space.

Definition 2.2: Reduced State Space
A reduced state space of a program is a subset of the state space in which
states are subset of states of the original state space and edges connect
states between which there is a directed path in the original state space
such that all the internal states of this path are not contained in the
reduced state space.1

Several techniques can be used to construct reduced state space
in such a way that a given property (or a class of properties) holds
in the reduced state space if and only if it holds in the original state
space. For example, partial order reduction [Pel93], dynamic partial
order reduction [FG05] or τ+ reduction [RBB13].

On top of the reductions, it is also possible to build an abstraction
of a state space, i.e., a state space that preserves some of the properties
of the original but abstracts away some of its complexity. These
abstractions are usually built from the implicit representation of the
program. Abstractions are often used to reduce large or infinite state
spaces to sizes that can be managed. Usually, abstractions are designed
such that results derived from the abstract state space can be used to
obtain some information about the original state space.

Definition 2.3: Over- and Under-Approximations in Abstrac-
tion
Suppose we have an abstracted state space Ŝ that corresponds to a
(concrete) state space S. Suppose further that we are interested in
the reachability of states that satisfy some property P that can be
evaluated both in S and Ŝ.

• We say that Ŝ is an over-approximation of S if the fact that no
state that satisfies P is reachable in Ŝ implies that no such state
is reachable in S (i.e., Ŝ can contain more behaviour that leads
to such a state).

http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1007/978-3-642-38088-4_1
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• We say that Ŝ is an under-approximation of S if the fact that a
state that satisfies P is reachable in Ŝ implies that there is a state
that satisfies P reachable in S (i.e., Ŝ can contain less behaviour
that leads to such a state).

Abstractions are also connected with the notion of refinement. Often
a program is over-approximated, then analysed, and if an error is found,
this error is validated. If the error is valid, then there is a real error in
the original program. However, if the error is not valid, the error trace
is used to refine the abstraction, i.e., make it more precise to rule out
this spurious error (and preferably also similar spurious errors). This
technique is often called Counterexample-Guided Abstraction Refinement
(CEGAR) [Cla+00; Kur95].

An example of an abstraction technique is predicate abstraction
[CU98]. Instead of tracking original values of variables, program ab-
stracted with predicate abstraction tracks only validity of predicates
over the variable values. For example, it might track predicates such as
(x > 0) or (y ≤ x). Refinement with is usually done by addition of new
predicates.

Finally, we will need the following state-space-related definitions.

Definition 2.4: Finite State Space
We say that a program has a finite state space if the number of vertices
and edges in the state space multigraph is finite. Otherwise, we say the
program has an infinite state space.

Definition 2.5: Run
A run in the state space is a (possibly infinite) path in the state space
(or reduced state space) that starts in the initial state. That is, a run
is a sequence of states σ = s0, s1, . . . such that s0 is the initial state
and for each consecutive pair of states si, si+1 there is an edge from
si to si+1 in the corresponding (reduced) state space. States can be
repeated in a run and a run can be infinite.

2.1.2 Program Properties

To be able to find errors in programs, an analysis tool has to have
some specification of program correctness – a property that should be
checked. In this section, we will introduce several categories of program
properties together with examples of particular properties.

Safety Properties are properties that can be checked locally – for
each state of the program, we can determine if the state satisfies or
violates the given property. Therefore, to conclude the program is
error-free under given safety property, it suffices to show that no state
violates the property.

Examples of safety property include memory safety (every time
we access a particular part of memory, this memory is allocated and
accessible to the program), assertion safety (a program does not violate
any of the assertions in the source code), and control-flow definedness
(every time a conditional jump is performed, the values the jump is
based on must have well-defined value).

http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/BFb0028753
http://dx.doi.org/10.1007/BFb0028753
http://dx.doi.org/10.1007/BFb0028753
http://dx.doi.org/10.1007/BFb0028753
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Some program properties can be checked locally only if sufficient
information is kept in the program state. For example, checking the
absence of memory leaks requires that it is possible to enumerate all
allocated objects and all objects to which there are usable pointers.
Similarly, mutex-related deadlocks can be detected by safety analysis if
the program keeps track of the graph of waiting for mutexes.

Temporal properties Not all properties can be directly described
as safety properties. For example, we can have a property stating “every
time a button is pressed, the elevator will eventually drive to the floor
the button was pressed on”. Such a property cannot be checked directly
in one state of the program, but it is a property of runs of the program.

Various temporal logics can be used to describe such properties, for
example LTL, CTL, CTL* [BK08] or µ-calculus [Koz82].

Termination Properties A distinguished kind of temporal proper-
ties are termination properties, which are properties which allow us to
specify that a program must (or must not) terminate, or that some of
its parts must (or must not) terminate.

With tools that check for termination, we often distinguish termi-
nation analysis, which is an analysis that aims to prove termination
but is often unable to conclude that a program does not terminate,
and nontermination analysis, which aims to prove that the program
does not terminate. This distinction is useful as the heuristics used
for proving termination and nontermination are often different, and
therefore a single analyser might not possess both capabilities.

2.1.3 Hardware and Platform Related Considerations

When a program is executed on given hardware, its behaviour might
depend on the concrete features of the hardware. Therefore, for the
program analysis to be usable, one must know what hardware model(s)
the program analysis tool adheres to and what is their relation to the
real hardware the program will be executed on. In practice, it is often
hard to prove that a program will be correct on any hardware on which
it will be possible to compile it.

For example, the size (and therefore precision) of the standard
C/C++ type int might depend on the hardware the program is using:
on an 8-bit or 16-bit embedded microprocessor, int will likely be a
16-bit type with a maximum value of 215− 1, while on a common 64-bit
(or 32-bit) computer it will be a 32-bit number with the maximum
value of 231 − 1. Therefore, a code that causes a bug due to integral
overflow on a 16-bit embedded microprocessor might be correct on a
64-bit machine.

Another example concerns the alignment of values in memory. Often
it is possible to address single bytes in memory, but certain data types
(larger than a byte) are only allowed to start on addresses divisible by a
given alignment. For example, an alignment of a 32-bit int type might
be 4 bytes (32 bits). Depending on the hardware platform, reading and
writing unaligned values might work (e.g., on x86 and x86-64), might
trigger an error (e.g., on some ARM processors) or the address might be

http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1007/BFb0012782
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2 Other communication
methods can be emulated
using shared memory. Fur-
thermore, many program-
ming languages, including
C++, have no native sup-
port for other communica-
tion schemes.

silently rounded to the nearest aligned address (e.g., on some embedded
ARM processors). Therefore, the behaviour of the same program with
an unaligned read can differ drastically depending on the platform on
which it is executed.

Furthermore, some features of the program are affected not only by
the hardware, but also by the operating system (or more generally the
platform) for which it is compiled. For example, the calling conventions
of C programs compiled on Windows and Linux differ even on the same
hardware. Similarly, sizes of data types might depend on the platform
– on Windows C++ long is 32 bits long even on 64-bit systems (and
therefore cannot be used to hold values of pointers), while it is 64 bits
long on 64-bit Linux systems.

2.2 Parallelism & Threading Model

Parallelism is an essential part of programming high-performance soft-
ware that can fully take advantage of the current hardware. However,
parallelism comes with additional problems not present in the develop-
ment of sequential software. Namely, due to the need for synchronisation,
it is significantly harder to create correct parallel software compared to
the development of sequential software. Furthermore, it is also hard to
create parallel software that scales well with the number of processors
(or processor cores) available. Improving scalability usually makes the
problem of correctness even harder – it often requires more fine-grained
(and therefore error-prone) synchronisation. For example, fine-grained
locking or lock-free programming can lead to high-performance code,
but checking that the code uses synchronisation properly is significantly
harder than for code that uses a few locks with well defined regions of
shared memory they guard.

Furthermore, relaxed memory behaviour comes into play once shared
variables are not only accessed in critical sections (i.e., protected by
mutexes). As processor manufactures strive to increase the speed of
processors, they have introduced various optimisations into the memory
infrastructure to avoid waiting for the relatively slow main memory.
These optimisations can be (and in most processors are) visible to a
parallel program and result in relaxed memory behaviour. For example,
on x86 processors (which are used in most laptop, desktop and server
computers) a memory store can be delayed and appear, from the point of
view of the other threads, later than a subsequent load. Some processors
(for example POWER and higher-performance ARM processors) allow
even more reordering, for example, reordering of independent loads.

In this section, we describe the basic model of parallelism we assume
for our programs and follow some of its implications. We also outline
the basics of relaxed memory behaviour and memory models which
describe it.

2.2.1 Basic Threading Model

We assume that a program consists of one or more threads that interact
using shared memory.2 We also assume that execution of a thread can be
interrupted at any point by a thread scheduler (of the operating system
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3 For example, sup-
pose a program with

threads t0 and t1:
mutex mtx0, mtx1;

void t0() {
unique_lock(mtx0);
unique_lock(mtx1);
/* ... */

}

void t1() {
unique_lock(mtx1);
unique_lock(mtx0);
/* ... */

}

If t0 locks mtx0 and t1
locks mtx1 then each of

the threads will attempt
to lock the mutex al-

ready owned by the other
thread. Therefore, the

threads are in deadlock –
neither of them can pro-

ceed and both are blocked.

4 Suppose a program
with threads t0 and t1:

atomic<bool> flag;

void t0() {
while (!flag) {

/* wait */
}
/* ... */

}

void t1() {
flag = true;
/* ... */
flag = false;
/* ... */

}

If t0 starts executing the
while loop only after t1

sets flag to false the loop
will never end, and t0 is

in livelock – it can execute,
but does not proceed (pro-

vided flag is not set again).

on which the program runs). The execution will be later eventually
resumed (unless the program exits in the meantime or the thread is
blocked infinitely). A thread can be blocked if it waits for a resource
provided by the operating system, for example, availability of a lock or
input from an input device. If a thread cannot be resumed because it is
blocked and does never cease to be blocked we say there is a deadlock.

Definition 2.6: Deadlock, Partial Deadlock, Global Deadlock
A deadlock happens if a scheduler never allows a thread to run because
it waits for a resource that never becomes available.3

Sometimes, when we need to distinguish between all the threads
being blocked and only some of them being blocked, we will use the
notion of partial deadlock to signify a situation in a program where
some threads are blocked (in deadlock), but others can still proceed
and global deadlock for a deadlock which blocks all threads. Usually,
we will just use deadlock to refer to partial deadlock.

It is important to note that our definition of deadlock does not
include busy waiting – i.e., a situation in which a thread is executing
a loop that tests that some event occurred. Busy waiting can be used
for example to implement exclusive sections without operating system
support.

Definition 2.7: Livelock
Livelock is a situation in which a thread is allowed to run (by the
scheduler), but does not proceed in any meaningful way because it
executes a loop that is waiting for an event that never happens.4

Interleaving of Threads In practice program threads can run con-
currently, i.e., multiple cores of the processor can execute different
threads at the same instant in time. Furthermore, the scheduler can
map threads to processor cores arbitrarily, and it can even change the
core that executes a given thread. It is not practical (and not necessary)
to simulate this behaviour when performing an analysis of a parallel
program. Instead, we consider that threads are interleaved (interleaving
semantics) or we consider execution based on some relaxed memory
model.

Definition 2.8: Interleaving Semantics of Threads
With the interleaving semantics, we assume that all possible executions
of a parallel program can be obtained by interleaving. That is, at
any point in the execution of the program, we consider which threads
are allowed to run and explore all possible selections. After a thread
performs an action, we again consider all possible actions of all threads
and so on.

2.2.2 Relaxed Memory Models

A memory model describes the behaviour of memory operations on a
given platform. A relaxed memory model describes such behaviour on
a platform with relaxed memory. When considering relaxed memory
models, it is also useful to consider a memory model that is not relaxed
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and corresponds to the interleaving semantics of threads. This memory
model is sequential consistency.

Definition 2.9: Sequnetial Consistency
Sequential consistency is a memory model corresponding to the inter-
leaving semantics of threads. Under sequential consistency, all effects of
memory manipulating instructions are visible to all threads immediately,
and no instruction reordering is observable.

The operations semantics of sequential consistency is given by a
machine that has no instruction reordering, and all memory operations
are atomic and access memory directly, without any caches. Sequential
consistency is the strongest memory model (it is not relaxed at all).
Therefore, any behaviour observable under sequential consistency will
also be possible under a relaxed memory model, but a relaxed memory
model can exhibit additional behaviour.

In practice, sequential consistency is not sufficient with modern pro-
cessors that exhibit relaxed memory behaviour. The relaxed behaviour
of processors arises from optimisations in cache consistency protocols
and observable effects of instruction reordering and speculation. The
effect of this behaviour is that memory-manipulating instructions can
appear to be executed in a different order than the order in which
they appear in a thread’s code, and their effect can in some cases even
appear to be in a different order on different threads. For efficiency
reasons, most modern processors (except for simple ones in embedded
microcontroller and low-cost mobile devices) exhibit relaxed behaviour.
The extent of this relaxation depends on the processor architecture
(e.g., x86, ARM, POWER) but also on the concrete processor model.
To make matters worse, the actual behaviour of the processor is often
not precisely described by the processor vendor [Sew+10]. To abstract
from the details of particular processor models, relaxed memory models
are used to describe (often formally) behaviour of given processor ar-
chitecture. Examples of relaxed memory models of modern processors
are the memory model of x86 and x86-64 CPUs described formally
as x86-TSO [Sew+10] and the multiple variants of POWER [Sar+11;
Mad+12] and ARM [AMT14; Flu+16; Pul+17] memory models.

For the description of a relaxed memory model, it is sufficient to
consider operations that affect memory. These operations include loads
(reading of data from memory to a register in the processor), stores
(writing of data from a register to memory), memory barriers (used
to prevent reordering), and atomic compound operations (read-modify-
write operations and compare-and-swap operation). Compound non-
atomic instruction exist on some architectures (e.g., the add instruction
in x86 can have one memory operand), but they might be rewritten
to an equivalent sequence of a load to register, a register modification,
and a store, and therefore need not be considered.

2.2.3 The x86-TSO Memory Model5

The x86-TSO memory model is a formal description of the memory
model used in x86 and x86-64 processors (manufactured by both Intel
and AMD) [Sew+10]. It is one of the strongest relaxed memory models

http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/3158107
http://dx.doi.org/10.1145/3158107
http://dx.doi.org/10.1145/3158107
http://dx.doi.org/10.1145/3158107
http://dx.doi.org/10.1145/3158107
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int x = 0;
int y = 0;
void t0() {

y = 1;
int a = x;
int c = y;

}
void t1() {

x = 1;
int b = y;
int d = x;

}

Is a = 0 ∧ b = 0 reachable?

shared memory

x 0
y 0 store buffer store buffer

y 1 x 1

thread 0
y = 1;
load x; →0
load y; →1

thread 1
x = 1;
load y; →0
load x; →1

Figure 2.1: A demonstration of the x86-TSO memory model. The
thread 0 stores 1 to variable y and then loads variables x and y. The
thread 1 stores 1 to x and then loads y and x. Intuitively, we would
expect it to be impossible for a = 0 and b = 0 to both be true at the
end of the execution, as there is no interleaving of thread actions which
would produce such a result. However, under x86-TSO, the stores are
cached in the store buffers (marked red). A load consults only shared
memory and the store buffer of the given thread, which means it can
load data from memory and ignore newer values from the other thread
(blue). Therefore a and b will contain old values from memory. On
the other hand, c and d will contain local values from the store buffers
(locally read values are marked green). The figure depicts the state of
memory and buffers after the code of both threads executed, but before
the data was propagated from store buffers to main memory.

[SPA94] SPARC Inter-
national, “The SPARC
Architecture Manual”.

[Sew+10] Sewell et al.,
“X86-TSO: A Rigor-
ous and Usable Pro-
grammer’s Model for
x86 Multiprocessors”.

6 These instructions have
the lock prefix in the as-
sembly, for example, lock
xadd for atomic addition.

7 lock cmpxchg

– it is relaxed compared to sequential consistency, but not nearly as
relaxed as some of the other common memory models such as memory
models of ARM and POWER processors. The x86-TSO is very similar
to the SPARC Total Store Order (TSO) memory model [SPA94]. It
does not reorder stores with each other, and it also does not reorder
loads with other loads. The only relaxation allowed by x86-TSO is that
a store can appear to be executed later than an independent load that
succeeds it in a thread. The memory model does not give any limit on
how long a store can be delayed. An example of non-intuitive execution
of a simple program under x86-TSO can be found in Figure 2.1.

The operational semantics of x86-TSO is described in [Sew+10]. The
corresponding machine has multiple hardware threads (or cores), each
with associated local store buffer, a shared memory subsystem, and a
shared memory lock. Store buffers are first-in-first-out caches into which
store entries are saved before they are propagated to shared memory.
Load instructions first attempt to read from the store buffer of the
given thread, and only if they are not successful, they read from shared
memory. Store instructions push a new entry to the local store buffer.
Entries in the store buffer are not visible to threads other than the
one owning the store buffer. Atomic instructions include various read-
modify-write instructions, e.g. atomic arithmetic operations (that take
memory address and a constant),6 or compare-and-swap instruction.7

http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/1785414.1785443
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example, ARM require
loaded values to be aligned,
usually so that the address
is divisible by the value
size.

10 E.g., writing a 64-bit
value and then reading a
16-bit value from inside it.

[SPA94] SPARC Interna-
tional, “The SPARC Archi-
tecture Manual”.

[McK10] McKenney, “Mem-
ory barriers: a hardware
view for software hackers”.

[AMT14] Alglave et al.,
“Herding Cats: Modelling,
Simulation, Testing, and
Data Mining for Weak
Memory”.

All atomic instructions use the shared memory lock so that only one
such instruction can be executed at a given time, regardless of the
number of hardware threads in the machine. Furthermore, atomic
instructions flush the store buffer of their thread before they release
the lock. Therefore, the effects of atomic operations are immediately
visible, i.e., atomics are sequentially consistent on x86-TSO. On top of
these instructions, x86-TSO has a full memory barrier (mfence) which
flushes the store buffer of the thread that executed it.8

If a programmer (or a compiler) wishes to recover sequential con-
sistency on x86, they need to ensure memory stores are propagated to
main memory before subsequent loads execute. This is most commonly
done by inserting a memory fence after each store. An alternative
approach would be to store using atomic exchange instruction (lock
xchg) as it can atomically swap value between a register and a memory
slot.

One of the specifics of x86 is that it can handle unaligned memory
operations.9 While the x86-TSO paper does not give any specifics about
handling unaligned and mixed memory operations10, it seems from our
experiments that such operations are not only fully supported, but
they are also correctly synchronised if atomic instructions are used.
This behaviour is in agreement with the aforementioned operational
semantics of x86-TSO in which all the atomic operations share a single
global lock.

2.2.4 Other Hardware Memory Models

Older works on the analysis of programs under relaxed memory mod-
els usually consider the SPARC TSO, PSO and RMO memory mod-
els [SPA94] or the memory model of ALPHA [McK10] processors.
However, these memory models are not very relevant any more, except
for TSO, which is sometimes used interchangeably with the x86-TSO
memory model, as they are very similar (the difference is in the be-
haviour of atomic compound operations, but some works use TSO to
stand for the memory model of x86 processors).

Currently, apart from the x86-TSO memory model, mostly the
memory models of variants of POWER and ARM processors are relevant.
While these processors differ significantly in the area in which they
are used (POWER is used in high-performance servers while ARM is
mostly used in mobile devices), their memory models share some basic
features. Recently, there is also interest in the memory model of RISC-V
architecture, which is also similar to memory models of POWER and
ARM. All of these types of processors exhibit more relaxed behaviour
then x86-TSO, for example, it is possible to reorder a load after a
store or to reorder stores or loads with one another (provided they
are independent). On POWER it can also happen that a sequence of
operations executed by a single thread will be observed by different
other threads in different orders. An example of such behaviour can be
seen in Figure 2.2.

There are several version (or generations) of ARM and POWER
processors, and also multiple versions of memory models. The memory
model of ARMv7 is described in [AMT14]. The memory model of newer

http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.14a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.14a.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.14a.pdf
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/2627752
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int x = 0, y = 0;

void wrt0()
{

x = 1;
}

void wrt1()
{

y = 1;
}

void read0()
{

int x0 = x;
int y0 = y;

}

void read1()
{

int y1 = y;
int x1 = x;

}

Is it possible that x0 = 1 ∧ y0 = 0 ∧ x1 = 0 ∧ y1 = 1?

Figure 2.2: An independent readers of independent writers example
commonly used to demonstrate some of the features of POWER memory
models. We assume each of the functions is executed in a separate
thread. Here, we are asking if it can happen that while the read0
observes the new value of x and old value of y the read1 will observe
the old value of x and new value of y. Such an observation would imply
that the two modifications are visible to the two readers in different
order. This behaviour can indeed be observed on POWER [Sar+11],
but not on ARMv8 [Pul+17].

[Flu+16] Flur et al., “Mod-
elling the ARMv8 Archi-
tecture, Operationally:
Concurrency and ISA”.

[Pul+17] Pulte et al., “Sim-
plifying ARM Concur-

rency: Multicopy-atomic
Axiomatic and Opera-

tional Models for ARMv8”.

[Pul+19] Pulte et al.,
“Promising-ARM/RISC-

V: A Simpler and
Faster Operational

Concurrency Model”.

[Sar+11] Sarkar et
al., “Understanding

POWER Multiprocessors”.

[Sar+12] Sarkar et
al., “Synchronising

C/C++ and POWER”.

[Gra+15] Gray et al., “An
Integrated Concurrency
and Core-ISA Architec-

tural Envelope Definition,
and Test Oracle, for IBM
POWER Multiprocessors”.

[Mad+12] Mador-Haim
et al., “An Axiomatic

Memory Model for
POWER Multiprocessors”.

ARMv8 is described in [Flu+16], but it was later revised and simplified
in collaboration with ARM and formalised in [Pul+17] and the ARMv8
architecture description. Later in [Pul+19], an operation model of
ARMv8 concurrency equivalent with the one presented in [Pul+17] and
optimised for program analysis was presented. Interestingly, [Pul+19]
also presents a memory model of RISC-V architecture which is similar
to the revised ARMv8 memory model.

The basis of POWER memory model was described as an abstract
machine in [Sar+11] and later extended in [Sar+12] to cover atomic
compound operations. A more detailed memory model of POWER is
presented in [Gra+15], including for example behaviour of mixed-size
memory operations. Axiomatic description of POWER is provided
by [Mad+12] and [AMSS10]. In [Flu+17], the authors describe the
behaviour of POWER and ARMv8 in the presence of mixed-size memory
operations.

2.2.5 Memory Models of Programming Languages11

Not all programming languages have concurrency and memory model
defined in the language. Indeed, C and C++ before the 2011 revisions of
their standards did not define concurrency and therefore, the majority of
concurrent C code relies on non-standard concurrency. In the absence of
programming language support, the programmers wishing to use concur-
rency have to rely on a combination of library and compiler support that
provides (platform-specific) means to support concurrency. For example,
on Linux and most POSIX-compatible operating systems, the POSIX
threads library (pthreads) defines ways to launch threads, wait for
them, and synchronise their execution using various (blocking) synchro-
nisation primitives such as mutexes and condition variables. A compiler
compatible with this library then guarantees that its optimisations will
not break this functionality, for example, that it will not reorder opera-

http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2837614.2837615
http://dx.doi.org/10.1145/2837614.2837615
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http://dx.doi.org/10.1145/2830772.2830775
http://dx.doi.org/10.1145/2830772.2830775
http://dx.doi.org/10.1145/2830772.2830775
http://dx.doi.org/10.1145/2830772.2830775
http://dx.doi.org/10.1145/2830772.2830775
http://dx.doi.org/10.1145/2830772.2830775
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
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instruction directly.
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tions around the calls to synchronisation functions. The compiler also
usually defines low-level synchronisation primitives which correspond to
atomic compound operations. For example, the GCC and clang compil-
ers both define builtin functions such as __atomic_compare_exchange
and __atomic_add_fetch. These builtins allow semi-portable use of
atomic operations, in a sense, they are not specific to the concrete
hardware platform.12 Still, they are bound to the given compiler or a
group of compilers (such as GCC and clang).

The downside of the library and compiler approach to concurrency
is that it makes it hard to write genuinely platform-independent code
in the given language. For this reason, many programming languages
(eventually) provide concurrency primitives and define a memory model
guaranteed by the language.

C and C++ The C++11 [ISO12] and C11 [ISO11] standards intro-
duced support for threading and atomic operations to C++ and C. The
memory model of both languages is the same, but they differ in the
syntactic ways in which its features are used.13

The C++ memory model was revised in the following standards,
with the most notable changes in the C++20 [ISO20], including mod-
ifications to the strongest sequentially-consistent version of atomic
operations. These latest changes mostly remedy problems in interaction
between the sequentially consistent operations and weaker memory
orderings presented in [Lah+17]. The actual changes are described
in [Boe+18].

The C++11 memory model is not formalised in the C++11 standard.
An attempt to formalise it was given in [Bat+11], formalising the N3092
draft of the standard [ISO10]. While this formalisation precedes the
final C++11 standard, it seems that there were no changes in the
specification of atomic operations after N3092. Nevertheless, there
are some differences between the formalisation and N3092 (which are
justified in the paper). The formalisation was later revised in [Lah+17],
which led to the aforementioned revision of concurrency in C++20.

Overall, the C++ memory model is complex and complicated by its
intention to allow high-performance on various existing or hypothetical
future hardware platforms. Atomic variables and operations play a
central role in in the C++ memory model. Atomic variables are
variables of particular types that define atomic operations such as
loads, stores, atomic read-modify-write, and compare-exchange. For an
atomic operation, it is possible to specify the required memory ordering:
C/C++ allows not only sequentially consistent atomic operations but
also weaker (low-level) atomic operations that enable implementation
of efficient parallel data structures in a platform-independent way. An
example of C++ code that leverages atomic variables is shown in
Figure 2.3 and Figure 2.4.

A notable feature of the C++ memory model is that any program
that contains a data race on a non-atomic variable14 has undefined be-
haviour. Therefore, synchronisation is possible only by atomic variables
and concurrency primitives such as mutexes and condition variables.
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std::atomic<int> x;
int y;

void thr0() {
x.fetch_add(1); // OK
y++; // RACE

}

void thr1() {
x++; // also OK
y++; // RACE

}

Figure 2.3: A basic example of C++ atomics. The variable x is
atomic, and therefore can be safely used in concurrent settings (the
standard modification operators for integral types are available and
atomic). On the other hand, the variable y is not atomic and therefore
incrementing it from two threads causes data race.

[ISO10] ISO C++ Stan-
dards Committee,

“C++ International
Standard – N3092”.

14 Data race is defined as
two accesses to the same
non-atomic variable, at
least one of them being

a write, that are not syn-
chronised so that they can-
not happen concurrently.

[MPA05] Manson et al.,
“The Java Memory Model”.

[LLVM20] LLVM
Project, “LLVM Lan-

guage Reference Manual”.

15 This can be generalised
to multiple cooperating

programs, but the distinc-
tion is mostly technical.
With multiple programs,
message passing is used
more often, especially in
distributed computing.

16 And by extension to
other general-purpose

programming languages
with concurrency sup-

port, e.g., Java and C#.

Java The Java memory model is rather different from the C/C++11
one. Its primary goal is to ensure that programs that cannot observe
data races under sequential consistency will execute as if running under
sequential consistency (the data race free guarantee) [MPA05]. The pri-
mary means of synchronisation in Java are mutexes (called monitors in
Java), synchronised sections of code (which use monitors internally), and
volatile variables, which roughly correspond to sequentially consistent
atomics in C++11.

Furthermore, as Java strives to be memory safe, it also defines the
behaviour of programs with data races. This behaviour is rather peculiar,
as it is primarily concerned with prohibiting out-of-thin-air values –
values which, informally speaking, depend cyclically on themselves.
These values are primarily prohibited to avoid forging pointers to
invalid memory or memory which should be otherwise inaccessible to a
given thread [MPA05].

LLVM The LLVM Intermediate Representation has a memory model
derived from the C++ memory model, with the difference that it
lacks release-consume ordering and offers additional unordered ordering
that does not guarantee atomicity but makes results of data races
defined [LLVM20]. The unordered operations are intended to match
the semantics of the Java memory model for shared variables.

2.2.6 Approaches to Multi-Threaded Software

At the highest level, multiple threads of a program can either use
message passing, or shared memory, to communicate.15 While message
passing can be done in any reasonably expressive programming language
with support for concurrency, there are programming languages which
adopt it as the primary way of implementing concurrent or distributed
programs, for example, Erlang or Go. In this work, we are focusing on
C++16 which has no built-in support for message-passing concurrency,
therefore we will focus on shared memory concurrency. In C++ and
similar languages, message passing can be implemented as an abstraction
over shared memory.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://dx.doi.org/10.1145/1040305.1040336
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
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Data data;
std::atomic< bool > ready;

void thr0() {
data.load_data();
read.store( true, std::memory_order::release );

}

void thr1() {
while ( !read.load( std::memory_order::relaxed ) )
{ }
std::atomic_thread_fence( std::memory_order::acquire );
data.do_work();

}

Figure 2.4: A simple example of use of low-level atomic API. Here
thr0 loads data somehow and then signals to thr1 that it should be
processed. The data variable itself is not atomic, and presumably, the
type is not made for concurrent access. An atomic boolean is used
to wait for data in thr1 – once data is loaded the ready flag is set,
using the release memory ordering. The actual waiting in thr1 uses
the weakest relaxed ordering which does not cause any synchronisation
(it just ensures concurrent changes to the variable itself are consistent),
but once the wait ends a fence is executed. The fence uses acquire
ordering and therefore completes release-acquire ordering between thr0
and thr1 – anything written by thr0 before the release store is available
to thr1 after the acquire fence. An interesting property of this example
is that it compiles with no extra synchronisation or atomic instructions
on x86 (atomic only affects compiler optimisations there), but uses
synchronisation on more relaxed platforms.

17 In C/C++ since the 2011
standards.

Lock-Based Synchronisation Synchronisation plays a crucial role
in shared memory concurrency. Concurrent unsynchronised access of
two or more threads to the same memory location, with at least one of
the threads writing to it, will cause data race which can lead to data cor-
ruption and program malfunction. Lock-based synchronisation (critical
sections) is often used as it is reasonably simple to understand it, and
is often natively supported by programming languages.17 Furthermore,
locks usually use operating system primitives to block waiting threads
while another thread executes the critical section, which can increase
the performance of systems with more threads than available processors
as the waiting threads are inactive and other threads can run in the
meanwhile.

On the other hand, synchronisation can degrade the performance of
concurrent software. In the extreme case when all interesting work is
done in a single critical section executed by many threads, there will
be no gain from parallel execution and the overhead of threads and
their synchronisation will make the program slower than its sequential
version. For this reason, critical sections should be as short as safely
possible and different areas of shared memory should be protected by
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18 The size of the
atomically-accessed area is
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of a pointer on the given
platform (e.g., 8 bytes on
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ing of this paragraph.

different locks so that the program can access different areas of shared
memory concurrently. This inherently increases the complexity of
synchronisation and risks of data races or deadlocks – indeed deadlocks
are easy to avoid with one lock, but with multiple locks, care must be
taken if more then one lock is held at one time, which is a common
situation.

Atomic Access and Lock-Free Programming To further improve
performance, it is sometimes useful to avoid operating-system-assisted
synchronisation and use atomic operations instead. These operations
can be used to guarantee synchronisation over a word-sized location of
memory.18 Atomic operations are used to implement lock-free algorithms
and data structures which do not require critical sections at all. In this
case, extra care must be taken to the ordering of operations that cannot
be performed atomically due to the size limit of atomic instructions
and the programmer must carefully evaluate the impact of memory
model on their algorithm. An example of (a fragment of) lock-free data
structure can be found in Figure 2.5.

Overall, there is often a steep compromise between code simplicity
and performance. A code that uses a few locks can often be reasonably
understandable, and the programmer need not concern themself with
relaxed memory as correct use of locks makes its presence invisible, but
performance might be degraded by synchronisation. On the other hand,
lock-free algorithms and data structures can have excellent performance,
but designing them and checking their correctness requires a lot of effort
and relaxed memory must be taken into account.

2.3 Programming Languages Used in this The-
sis

In this work, we are mostly focusing on the analysis of C++. For this
reason, we will now introduce some of the features of this programming
language relevant to our work. After that, we will introduce LLVM
intermediate representation, which is a low-level programming language
used by clang and other LLVM-based compilers. DIVINE, the model
checker in which the work presented in this thesis is implemented,
actually analyses LLVM and uses the clang compiler to translate C++
to LLVM before the analysis.

2.3.1 C++

C++ is a high-level language well suited for a wide variety of projects,
from code which directly interacts with hardware to GUI applications.
It can be high-performance and has good support for building of ab-
stractions. Since the C++11 version of the C++ standard, C++ also
has native support for threads and atomic variables with varying levels
of atomicity guarantees. Unless explicitly stated otherwise, all C++
examples in this work use the C++20 standard, as defined by its latest
working draft N4860 [ISO20].19

https://isocpp.org/files/papers/N4860.pdf
https://isocpp.org/files/papers/N4860.pdf
https://isocpp.org/files/papers/N4860.pdf
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1 void push( const T &x ) {
2 Node *t;
3 Node *ltail = tail.load( std::memory_order_acquire );
4 if ( ltail->write.load( std::memory_order_relaxed )
5 == ltail->buffer + NodeSize )
6 t = new Node();
7 else
8 t = ltail;
9

10 *t->write.load( std::memory_order_relaxed ) = x;
11 t->write.fetch_add( 1, std::memory_order_release );
12

13 if ( ltail != t ) {
14 ltail->next.store( t, std::memory_order_release );
15 tail.store( t, std::memory_order_release );
16 }
17 }

Figure 2.5: A push (enqueue) operation of a single-producer-single-consumer lock-free queue from
an older version of DIVINE (modified to use C++11 atomic operations). The queue uses a linked
list of blocks (of type Node). Each block can hold a fixed number of elements of some type T. On
lines 2–8 the function checks whether there is a room in the last allocated block and allocates a
new block if necessary. Both the tail and write fields in the Node are atomic variables, and we
explicitly use memory ordering to avoid expensive synchronisation unnecessary on x86-64 processors.
Then, on line 10, the actual value is written to the node, on the location pointed to by the write
field – note that the write pointer is atomic, but the value it points to is not atomic. On line 11, we
shift the write pointer, which makes the data available to the consumer thread. At this point, we
need to use release memory ordering to ensure safety on platforms which are more relaxed then x86
and to prevent reordering by the compiler. The release ordering ensures that any changes performed
by the producer thread so far will be available to the consumer once it performs an acquire load on
the write pointer (to check that the queue is not empty).
Finally, on lines 13–16 we append the linked list of nodes if a new node was created on line 6. Again,
we use the release memory ordering to ensure all operations performed so far (in particular the shift
of write on line 11) are visible once these changes become visible.
Extending this approach to multiple producers is not trivial as the check if there is space available
and the publication of the written value would need to be performed at the same time. This would
require either modification of two different locations in one atomic step (which is not possible on
most processors and there is no C++ API for this operation) or a complete redesign of the queue
block.
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20 std:: is a names-
pace which indicates
this type belongs to

the C++ standard li-
brary. We will sometimes
omit it in the examples.

21 In the following exam-
ple, you can see a code
that spawns function

worker in a separate thread
and later waits for it.

void worker(int a,
int b) {

/* do something */
}
int main() {

std::thread
w(worker, 1, 2);

/* do something */
w.join(); // wait

}

22 They are usually based
on operating system level

blocking primitives – i.e., a
thread waiting on these
synchronisation primi-
tives is suspended and

not using any resources.

23 There is a single
global ordering of

atomic operations on
which all threads agree.

Threads In C++ a thread is started by creation of an object of type
std::thread.20 Later, the thread can be waited-for by calling the join
method of the std::thread object. Joining will block until the thread
we are joining finishes.21

High-Level Synchronisation promitives C++ comes with vari-
ous high-level synchronisation primitives.22 Two of the primary synchro-
nisation primitives are mutexes and condition variables. Mutexes can
be used to create mutual exclusion: only one thread can lock a given
mutex at any point. Condition variables allow some threads to wait for
a signal from other threads. They are often used in producer-consumer
scenarios to signal to consumers that there is some data ready for
them. They have two main operations – wait and signal – wait is
a blocking call that suspends its calling thread until another thread
calls signal. Waiting can only be ended if signal is called after the
wait started, the conditional variable has no way to detect that signal
was called before wait. Furthermore, due to the limitations of some
platforms, wait is allowed to end spuriously (without being signalled).
For these two reasons, condition variables are usually used together
with a shared variable which indicates whether or not the consumer
thread should proceed; this variable should be guarded by the same
mutex the condition variable uses for signalling.

Atomic Variables and Low-Level Synchronisation C++ has
also support for atomic variables and atomic operations with them.
These atomic variables allow the program to take advantage of atomic
hardware instructions available on most platforms. Atomic variables
are mainly used in lock-free data structures and algorithms.

Atomic variables in C++ are variables of one of the atomic types:
std::atomic_flag and std::atomic<T> for some type T (which is
usually an integral of pointer type, for example std::atomic<int>).
For integral types, std::atomic<T> defines various operations that
allow atomic modification of the value of an atomic variable: for example,
by calling fetch_add on an atomic variable it is possible to atomically
increment its value and return its original value before the increment.
Some of these operations are also available with the operator syntax
(e.g., using the operator +=). For all types, it is possible to exchange
the current value with a new one (returning the previous value) and to
perform compare-exchange (also sometimes called compare-and-swap),
which is a compound operation that atomically checks that the value
of an atomic variable is equal to a specified value and if so replaces the
original value with a new one.

The atomic operations are not required to be lock-free but can use
locks internally (with the exception of std::atomic_flag). Therefore,
atomic types can be implemented even for data types larger than the
platform-specific limit of atomic instructions.

Memory Ordering for Atomic Operations Without any ad-
ditional settings, all atomic instructions in C++ are sequentially con-
sistent.23 However, C++ aims to allow programmers to utilise the
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performance of a given platform fully, and therefore, it is possible to
specify weaker constraints for atomic operations. These constraints
are specified using a memory order. We will now informally describe
available memory orders.

std::memory_order::seq_cst is the strongest and default memory
order. It forces operations with this memory order to be sequen-
tially consistent. It also prevents reordering of other operations
(atomic or not) around a sequentially consistent operation.

std::memory_order::release is memory order used with store opera-
tions. It prevents previous memory operations in the same thread
to be reordered after the release store.

std::memory_order::acquire is used with load operations. It pre-
vents later memory operations in the same thread to be reordered
before the acquire load. A release store and a subsequent ac-
quire load from the same variable create a synchronisation that
ensures that all modifications performed in the storing thread
before the release store are visible to the loading thread after the
corresponding acquire load.

std::memory_order::acq_rel is used with atomic compound opera-
tions and combines the acquire and release orderings.

std::memory_order::consume is a weaker form of acquire that only
affects data-dependent variables. This memory ordering is not
widely used and is often treated as acquire by compilers.

std::memory_order::relaxed is the weakest atomic ordering. It guar-
antees no synchronisation with operations on other memory loca-
tions. It only guarantees atomicity of operations over the given
location. Relaxed ordering can be used, for example, to implement
atomic counters used for statistics.

Exceptions C++ has support for exceptions and is also able to
specify that a given function is not allowed to throw an exception. In
C++, it is possible to throw value of any type as an exception. When
an exception is thrown, it propagates to callers of the function which
have thrown it until it triggers a catch code block that can catch it –
a catch block that either catches exactly the type of the exception or
if the class of the exception uses inheritance, the exception can also be
caught a by a catch block that catches some of the predecessor types
of the exception. Whenever the propagation of an exception causes
a scope of some variable to end, the variable’s destructor is called to
release resources associated with it (for example, close an open file,
release memory or release a mutex).

If a function is marked as noexcept and an exception would propa-
gate from it, the program terminates.

Deterministic Destruction of Objects One of the core features
of C++ is that it has deterministic destruction of objects, i.e., the
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end of the lifetime of objects is precisely known (as opposed to being
determined by the garbage collector in garbage-collected languages
such as Java or C#). In C++, the end of life of an object happens
either when it goes out of scope (for scope-allocated objects), when it is
explicitly deallocated (for dynamically allocated objects) or when the
program terminates (for global objects). This allows C++ destructors,
which are special functions executed at the end of life of an object,
to be used for resource control. For example, an std::unique_lock
object might be initialised with an instance of a mutex, and it will
automatically lock the mutex when the unique_lock is constructed
and release the mutex when it goes out of scope. The same is used for
example in C++ file streams to close the file handle when the stream
goes out of scope, or for memory management.

An important property of this approach to resource management
is that it is exception-safe. If the resource-owning object is a local
variable, the resource will be automatically released at the end of
its scope, whether or not the end of scope was caused by exception
propagation or normal control flow.

2.3.2 LLVM IR

LLVM is a compilation infrastructure which can be used to build
optimising compilers. A compiler built on LLVM consists of a language-
specific frontend that processes the source code and produces a language-
independent LLVM intermediate representation, an optimiser that runs
on the LLVM intermediate representation, and a code generator that
produces executable code for the given platform. LLVM intermediate
representation (LLVM IR, LLVM code, or just LLVM), is a low-level
programming language mostly independent of both the high-level lan-
guage of the original program and the assembly language of the given
hardware platform. Nevertheless, LLVM IR is somewhat influenced by
the languages that are mainly translated to it, namely C and C++.

LLVM IR is a type-safe assembly-like language. Its basic operations
are instructions which take inputs of a specific type and produce an
output of possibly different type. Values can be stored either in registers
(each register is only assigned at one place in the code – the code is in
static single assignment (SSA) form) or in memory. Memory can be
further divided into global variables, which exist for the entire run of
the program, and dynamically allocated memory, which is obtained by a
call to an allocation function provided by the platform. The allocation
function is expected to be externally provided; memory allocation is
not a part of LLVM.

Memory Manipulation in LLVM Unlike the x86 machine code,
most LLVM instructions do not modify memory directly but work
with registers only. Therefore, to change a value in memory, it is first
necessary to load it, using the load instruction, then modify it, and
finally store it using the store instruction. Two more instructions can
access memory, and these are used for atomic compound operations.
The atomicrmw instruction (atomic read-modify-write) can atomically
perform a load, arithmetic or logic operation, and a store or atomically
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replace a value in memory with another value. In all cases, it returns
the old value of the memory location. The cmpxchg (compare exchange)
can atomically check if the value in memory is the same as expected,
and if so, replace it with a new value. Atomic compound operations
have memory order argument which specifies their level of atomicity.
Similarly, load and store instructions can be atomic, and their atomic
versions also come with a memory order argument. Memory orders in
LLVM are based on memory orders in C++ (see Section 2.3.1).

Threads and High-Level Synchronisation in LLVM LLVM has
no primitives for starting and handling threads nor for high-level syn-
chronisation of threads in shared memory (mutexes, condition variables,
. . . ). Therefore, this functionality has to be provided by libraries,
which matches well with the programming languages often translated
to LLVM, which usually implement threading using a library of thread-
manipulation and synchronisation primitives. Nevertheless, LLVM has
a notion of thread-local variables; i.e., variables that exist in a separate
copy in each thread.

Memory Model The memory model of LLVM is mostly based on
the memory model of C++. However, instead of atomic variables, it
uses only atomic operations (i.e., it is theoretically possible to combine
atomic and non-atomic access to the same variable in LLVM).

Exceptions LLVM has support for exceptions. Namely, there are two
ways in which a function can be called in LLVM. The call instruction
is used for calls which either cannot throw an exception, or which can
throw an exception, but the exception does not need to be inspected or
caught in the functions that perform the call. The invoke instruction
is used if the exception needs to be intercepted. An invoke is a
branching point. If the function called by invoke returns normally, the
invoke behaves like a call followed by a jump to the next instruction
after the invoke. If an exception is propagated through invoke, it
transfers control to a block of code which starts with a landingpad
instruction. The landingpad instruction returns information about
the exception and the code which starts with it then decides how to
handle the exception. The exception can be handled by this function,
or cleanup can be run, and the propagation of the exception can be
resumed using the resume instruction.

Interestingly, there is no instruction in LLVM to throw an exception.
Instead, the whole design assumes the platform for which the code is
compiled provides an exception support library – so-called unwinder
which can throw the exception. When the program is executing, the
unwinder also takes care of the actual propagation of the exception
through the call stack (unwinding). For this purpose, it needs metadata
which is generated by the code generator from the information in the
invoke, landingpad, and resume instructions.
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Figure 2.6: Overview of the architecture of DIVINE. The shaded
part consists of LLVM code which is interpreted by DiVM. This figure
was originally created for [Bar+17].
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2.4 DIVINE

DIVINE is an open-source verifier for C and C++ programs with a focus
on concurrency and hard to discover bugs [Bar+17; Roč20]. It aims
to be a general tool usable by programmers and can work with a wide
variety of programs and check for different property violations, including
assertion failures, memory access errors, memory leaks, use of unini-
tialised memory and mutex locking errors. There is also limited support
for liveness properties and an extension to checking nontermination of
parallel programs (Chapter 6, [ŠB19]). Furthermore, DIVINE aims at
full support of C and C++, including their standard libraries. Cur-
rently we support C++17 with most of its standard library (Chapter 4,
[ŠRB17]).

DIVINE’s platform model is loosely based on x86-64 Linux – it uses
64 bit pointers and data type sizes and alignments are the same as used
on this platform. With the optional support for the x86-TSO memory
model (Chapter 5, [ŠB18]), DIVINE also respects the memory models
of x86-64 processors. Among the most significant differences between
DIVINE and Linux on x86-64 are different calling conventions and stack
layout; however, these differences should be transparent to a correct
C or C++ program, and programs which rely on a platform-specific
layout of the stack will be reported as buggy in most cases (the stack
layout is not guaranteed bu the C/C++ standards, and therefore such
programs are not well-defined).

2.4.1 Architecture of DIVINE

The architecture of DIVINE is illustrated by Figure 2.6. At the base of
DIVINE, there is an explicit-state core which controls exploration of the
state space. To execute the program, DIVINE uses DiVM, a verification-
oriented virtual machine that executes LLVM instructions and DiVM
extensions to LLVM IR called hypercalls [RŠČB18]. DiVM hypercalls
behave as functions from the point of view of LLVM IR, but they are
treated as instructions by DiVM. These hypercalls handle operations
like memory allocation and feeing and nondeterministic choice. They
can also be used to switch stacks (for example to implement threading),
associate metadata with addresses, and to control the exploration of
the state space using interrupt points and cancellation.
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In DIVINE the DiVM has only limited knowledge of threads – it
can take their existence into account for the state-space reductions, but
cannot start or terminate them and does not direct their scheduling.
Instead, scheduling is controlled by a scheduler linked to the verified
program which uses the nondeterministic choice hypercall provided by
DiVM to decide which thread to execute. Thread creation and termina-
tion is also implemented in a library. Scheduling, thread management
and a basic POSIX-compatible interface including a filesystem model are
grouped into DiOS, a verification-oriented operating system [Roč+19].
On top of DiOS, there is a set of libraries including implementations of
C and C++ standard library, POSIX thread library (pthreads), and
unwinder for exception handling (see also Chapter 4 and [ŠRB17]).

2.4.2 Program Compilation & Libraries

All the parts of DIVINE described so far process LLVM IR. To be able
to handle C and C++, DIVINE uses the clang compiler (which is part
of the LLVM project). However, if DIVINE is to analyse a program,
it needs definitions of all the library functions this program uses in
the form of LLVM IR (alternatively DiVM itself would need to be able
to understand these functions). Therefore, DIVINE needs substantial
control over the compilation process; for example, it is not possible to
use system-installed (binary) libraries with DIVINE.

To make compilation reasonably simple for users, DIVINE integrates
the clang compiler using its library interface. This integrated compiler
compiles programs in an environment that contains only the libraries
available in DIVINE, automatically links them, and produces LLVM
IR that can be directly analysed with DIVINE. The compiler can be
invoked either automatically by DIVINE when it is executed with a C
or C++ file, or with a standalone compiler that can be used in place of
clang.

As we have already mentioned, DIVINE needs LLVM IR of the used
libraries. Therefore, DIVINE ships with implementations of standard
C and C++ library, the POSIX threads library, and a stack unwinder
library. The C and C++ standard libraries are based on existing
projects (that aim at normal execution), namely PDClib for the C
library and libc++ and libc++abi for the C++ library.

File System and POSIX API C and C++ standard libraries pro-
vide, among others, access to the file system. To be able to use the
file system in programs analysed by DIVINE, DIVINE provides two
possible approaches. The first is a virtual file system provided by DiOS.
In this mode, most file system operations are modelled by our Virtual
File System library (which is part of DiOS). The program can work with
the file system as usual, but this has no effect on the file system of the
computer the program runs on, the file system is part of the program’s
state. The file system can either start with an empty snapshot, or it
can load a snapshot of a directory at the start.

An alternative approach is to allow the program to access the file
system of the machine. However, this is not possible during normal
state-space exploration that explores the state space in BFS-like order
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as it could cause interference between independent parts of the state
space. Instead, DIVINE can execute a single run of the program (giving
random values to nondeterministic choices), record all supported system
calls, and then use this recording in analysis [KRB17]. A limitation of
this approach is that it currently works only if all the system calls are
executed in the same order in all runs of the program (which is unlikely
if the program uses file system from more then one thread).

On top of the file system support, DIVINE also has support for
other parts of the POSIX API, including parts of networking and clock
API [Roč+19].

2.4.3 Program Instrumentation

To avoid unnecessary complexity in DiVM, DIVINE uses program
instrumentation as a preprocessing step. This step runs on the LLVM
IR of the program and all the libraries linked to it. Instrumentation
adds potential interruption points to the program to specify points at
which the scheduler can be invoked. These interruption points are used
at memory access instructions and at back-edges of loops (to make
sure DiVM does not attempt run an infinite cycle). Furthermore, the
instrumentation is used to calculate metadata used by DiOS.

Instrumentation is also used to implement some extensions of
DIVINE. It is used by the symbolic and abstract extensions of DIVINE
[LRB18; CLOR19], for C++ exceptions (Chapter 4, [ŠRB17]), if the
program is analysed for relaxed memory behaviour (Chapter 5, [ŠB18]),
and to enable local nontermination checking (Chapter 6, [ŠB19]).

2.4.4 State Space Reductions

DIVINE relies on state space reduction to be able to handle reasonably
sized realistic parallel programs [RBB13; RŠČB18]. The basic principle
of the reductions used in DIVINE stems from the observation that
most of the instructions of one thread do not interfere with instructions
of other threads. For this reason, it is sufficient to enable thread
interleaving only after a block of instructions, provided we can ensure
that only one instruction that can interfere with instructions of other
threads can happen in each block and that each block terminates.

In DIVINE, we use heuristics to detect which instructions can
interfere with other threads. A simple version of such a heuristic is
that only instructions which access memory can interfere with other
threads in LLVM.24 For this reason, the instrumentation in DIVINE
only inserts potential interrupt points at these instructions. When
successors of a state are generated by DiVM, it uses information from
the potential interrupt points (which includes memory address range
and a type of the access) to determine if the interrupt is necessary. To
do this, DIVINE locally searches for actions of other threads that can
interfere with the given thread.

As the size of instruction blocks executed together by DiVM is
dynamic, it needs to ensure that each block is finite. Therefore, DiVM
detects control flow cycles and ends a block of instructions if a back-edge
in a control flow graph is repeated.

http://dx.doi.org/10.1007/978-3-319-67531-2_14
http://dx.doi.org/10.1007/978-3-319-67531-2_14
http://dx.doi.org/10.1007/978-3-319-67531-2_14
http://dx.doi.org/10.1007/978-3-030-30446-1_18
http://dx.doi.org/10.1007/978-3-030-30446-1_18
http://dx.doi.org/10.1007/978-3-030-30446-1_18
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-30923-7_5
http://dx.doi.org/10.1007/978-3-030-30923-7_5
http://dx.doi.org/10.1007/978-3-030-30923-7_5
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1109/QRS.2017.15
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-30446-1_20
http://dx.doi.org/10.1007/978-3-030-30446-1_20
http://dx.doi.org/10.1007/978-3-030-30446-1_20
http://dx.doi.org/10.1007/978-3-030-30446-1_20
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1007/978-3-642-38088-4_1
http://dx.doi.org/10.1016/j.jss.2018.04.026
http://dx.doi.org/10.1016/j.jss.2018.04.026
http://dx.doi.org/10.1016/j.jss.2018.04.026


2.4 DIVINE | 29

[Roč20] Ročkai,
“DIVINE 4”.

2.4.5 Implementation and Availability

DIVINE is open-source software written mostly in C++. DIVINE
source codes, as well as instruction on how to build and use it, can be
found on the project website [Roč20].

https://divine.fi.muni.cz/
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Chapter 3

State of the Art

Historically, automatic analysis techniques for parallel programs focused
on the analysis of models of systems. A programmer wishing to use
such a tool would either start by creating a model of the system (in
the specification step of the development), and then provide an exe-
cutable implementation for this model or, if they already had a working
product, they would have to create a model to analyse it. Such tools
include for example SPIN [Hol97], older versions of DIVINE [BBČŠ05],
LTSmin [Kan+15] and BMC [BCCZ99]. The model-based approach
requires an extra investment in the modelling phase and, even if analysis
of the model concludes it is correct, it does not prove that the final
product is indeed correct.

Later, with improvements of both analysis techniques, as well as
overall improvements in available computing power, analysis tools
for programs written in mainstream programming languages become
available. Early examples of such tools are Java Pathfinder [Vis+03] (an
explicit-state model checker for Java) and CBMC [CKL04] (a SAT-based
bounded model checker for C). Since 2012, the Software Verification
Competition (SV-COMP) [Bey20] aims to showcase tools that support
direct verification of software written in C and lately also Java. While
it includes mostly sequential programs, there is also a subcategory for
parallel C programs in SV-COMP.

We will focus in more details on automatic techniques for verification
of parallel programs. We will not consider program analysis techniques
which require substantial manual effort (e.g., proof-assistant-based
techniques), or techniques which are not applicable to realistic programs
(e.g., techniques which use a modelling language). We will also mostly
disregard techniques with no support for parallel programs. Finally, we
are primarily concerned with techniques that were implemented and
evaluated – the existence of a tool that can handle a programming
language (as opposed to a modelling language) can be seen as a witness
of maturity of a technique.

3.1 Explicit-State Model Checking

Explicit-state model checking is based on an exhaustive exploration
of the state-space graph. It checks that a given (finite-state) system
satisfies given property. The property is often provided by an LTL
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formula and the automata-based approach to LTL verification is used
(i.e., the problem is reduced to the problem of repeated reachability of
a state in the state-space graph) [BK08, §5.2]. In the particular case
of safety properties, it is sufficient to perform graph search for a state
which violates the safety property, for example, using the depth-first
search algorithm, or any other graph search.

The advantage of explicit-state model checking is that it is con-
ceptually easy to apply it to verification of parallel programs (under
sequential consistency), as the interleaving semantics of threads nat-
urally gives rise to the state space graph. Furthermore, explicit-state
model checking does not require the program to terminate; it is sufficient
that its state space is finite.1

State Space Explosion & Reduction Techniques In practice,
explicit-state model checking is prone to the state-space explosion prob-
lem: the number of states in the state-space graph of a reasonable
system can easily be so big it is not possible to store the state space
in available memory and explore the state space in a reasonable time.
Since the algorithm which explores the state-space graph needs to detect
which states were already seen to ensure termination (and to check for
LTL properties), available memory is often the limiting factor, at least
without advanced state space reduction techniques.

Several state-space reduction techniques were introduced to mitigate
the state-space explosion. Using these techniques, it is possible to
explore only some of the states of the state space in such a way that
the property holds for these states if and only if it holds for the entire
state space. One of these techniques is Partial Order Reduction (POR)
which can eliminate some states by exploring independent events only
in one particular order [Pel93; God+96].

Another wide family of reductions are techniques that can coalesce
a path in a state space into a single edge and hide all intermediate
states. Lipton introduced an early example of this idea in [Lip75]. He
used the notion of right movers (“resource acquire operations”) and
left movers (“resource release operations”) to identify statements in a
program which can be executed atomically. However, in the analysis of
realistic parallel programs, a notion of instruction (or action) visibility
is often used. A group of instructions from one thread can be executed
atomically, provided that at most one of them is observable by the other
threads, and that this grouping does not interfere with checking of the
verified property or termination of the search. Both static and dynamic
reduction methods were proposed, under many names, including D-
reduction [Lip75], path reduction [YG04], τ reduction [BBR12] for the
static variants and τ+ reduction [RBB13] and [RŠČB18, Section 6] for
the dynamic once. These reductions are also often used without naming
the technique, for example in Java Pathfinder [Vis+03]. Quite naturally,
the dynamic methods are better suited for the complex control- and
data-flow of realistic programs. Both partial order reductions and path
reductions are also often used in tools based on other principles then
explicit-state exploration.
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2 Consider a program with
threads t0 and t1:
int x = 0;
void t0() {

x = 1;
}
void t1() {

int a = x;
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Additionally, there are variants of symmetry reduction that reduce
the state space by coalescing states which differ only in properties not
relevant for the program analysis [CEJS98]. For example, using the
heap-symmetry reduction, two states that differ only in the order in
which memory objects were allocated can be considered equal [RBB13],
[RŠČB18, Chapter 6]. A dead-variable elimination [YG04] can also be
seen as an instance of symmetry reduction.

These state-space reduction techniques can reduce the number of
states by several orders of magnitude [RBB13], and therefore enable
verification of realistic (but still relatively small) programs.

Interestingly, the proposed reduction techniques which aim to pre-
serve verified properties are not always correct, for example the original
version of τ+ reduction considered only stores to be visible, but it was
later shown that repeated loads have to be also visible (shown by me in
[Šti16], fixed in [RŠČB18, Section 6]).2 A similar problem was present
in [CF11], where ESBMC could perform two conditional jumps that
read the same shared variable with no context switch between them
(section 3.1, rule R3). Interestingly, the authors notice the possibility of
missing context switches but only introduce an option to fix it, leaving
the problematic behaviour as default.

To further improve the capabilities of explicit-state model checking,
several techniques for memory-efficient representation of the set of vis-
ited states were introduced. These techniques include hash compaction
and bitstate hashing [Hol98], which are incomplete techniques that store
hashes of states instead of storing the entries states (and therefore can
omit some parts of the state space if there is hash collision), condi-
tional and external storage of states [HW07], and lossless compression
techniques [RŠB15; Laa19].

Data Nondeterminism While explicit-state model checking can
easily represent control-flow nondeterminism, it is not well suited for
data nondeterminism, as it is not practical (or even possible) to ex-
plicitly enumerate all possible values of data domains. Therefore, if
data nondeterminism is required, explicit-state model checking needs
to be combined with some technique for symbolic of abstract data
representation [Păs+13; MBLB16].

Tools The pioneering tool is the SPIN LTL model checker [Hol97;
Hol04]. SPIN has very limited support for analysis of realistic programs.
It targets a parallel modelling language PROMELA, which has support
to embed C code to define an atomic step. In [ZJ08] SPIN was extended
to have partial support for C. Even so, this version needs to have a test
driver in PROMELA.

Java Pathfinder (JPF) [Vis+03; AV19] is an explicit state model
checker (with symbolic extensions) for Java and other JVM-based3

languages (e.g., Scala, Kotlin). From its beginning, JPF targets par-
allel Java programs. It can check for safety properties, namely for
uncaught exceptions which in Java also subsume assertion checking and
bound checking. To reduce the state space, JPF uses hash-compaction
(and therefore under-approximates all possible behaviours), symmetry
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reduction (with respect to class loading order and heap symmetry),
optionally predicate abstraction (with user-provided predicates), partial
order reduction, and groups instructions with local effects. Interestingly,
the instruction grouping in JPF uses a heuristic which can cause it
to miss some behaviours. JPF also has models of parts of the Java
standard library (including limited IO support) and limited support for
execution of native code from the Java code4 In addition to scheduling
nondeterminism, JPF can use explicit choice as an additional source of
nondeterminism. The symbolic extension, Symbolic Pathfinder (SPF)
[Păs+13; Nol+19] adds support for symbolic data representation using
symbolic execution. It supports test generation and detection of asser-
tions and errors related to parallel execution. It primarily targets unit
tests and sub-system level testing and can use unit preconditions and
combine symbolic and explicit execution. To explore different possible
interleavings, SPF uses the explicit JPF without state comparison and
with depth bound to ensure termination (the state comparison can be
enabled, but it disregards the symbolic data and therefore can miss
many behaviours). SPF can handle some instances of dynamically
allocated linked symbolic data by lazy initialisation – when a symbolic
pointer is accessed, it can be expanded to either null pointer or another
node of symbolic data [KPV03]. SPF has support for symbolic arrays
[FLP17] and symbolic strings [Ban+16].

An unnamed explicit-state model checker for C# is presented in
[HR06]. It targets a subset of .NET bytecode (which is an intermediate
representation into which C# and other .NET languages are translated),
and it analyses parallel programs running under the .NET relaxed
memory model. It can be used to detect behaviour that differs from
any possible sequentially consistent behaviour and to insert memory
barriers to recover sequential consistency.

DIVINE [Bar+17] is an explicit-state model checker developed by
our research group. Historically, it targeted several modelling languages
for parallel systems and LTL verification using parallel and distributed
algorithms, but later it shifted towards the analysis of C and C++
using the LLVM intermediate representation. While it now aims pri-
marily at verification of safety properties (assertion violations, memory
access safety, detection of use of undefined variables, detection of mem-
ory leaks, numeric manipulation errors, and deadlock-freedom for the
POSIX mutexes), it also has limited support for LTL and an extension
for detection of nontermination in parallel programs (Chapter 6, [ŠB19]).
To tackle realistic programs, DIVINE uses a dynamic detection of invis-
ible actions (τ+ reduction) and an efficient representation of program
memory which facilitates heap-symmetry reduction and state-space
compression [RŠČB18]. DIVINE also supports symbolic and abstract
data representation using program transformations [LRB18]. Currently,
it supports symbolic bitvector manipulations for both integral and
floating-point data types and symbolic string representation [CLOR19].
With the symbolic data representation using bitvectors, DIVINE uses
SMT solvers to check for feasibility of traces and to compare symbolic
states – this way it retains the ability to join states that are semanti-
cally equivalent even if the symbolic data are represented by a different
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formula. The state comparison allows DIVINE with symbolic data to
ensure termination for programs with finite symbolic state space, and it
also enables checking LTL properties. One of the main goals of DIVINE
is to support verification of C and C++ programs which use existing
libraries. To this end, DIVINE has almost complete standard C and
C++ libraries (as of C++17), the POSIX thread library (pthreads),
and it also supports C++ exceptions (Chapter 4, [ŠRB17]). To reflect
the behaviour of parallel programs on contemporary hardware, DIVINE
has support to analyse programs with respect to the x86-TSO memory
model (Chapter 5, [ŠB18]). DIVINE also has an in-built compiler based
on LLVM’s clang and supports significant parts of POSIX file system
and process APIs [Roč+19].

SymDIVINE [MBLB16] was another explicit-state model checker
from our research group. It combines explicit control flow handling
with a symbolic representation of data using bitvectors (with symbolic
state equality). SymDIVINE targets safety and LTL properties in C
programs. This tool is now discontinued in favour of the aforementioned
symbolic data support in DIVINE.

3.2 Stateless Model Checking

Compared to explicit-state model checking, stateless model checking
(SMC) avoids storing the set of visited states and therefore has decreased
memory consumption. Furthermore, since the state representation is
not required to be as compact as possible, a stateless model checker
can have a simpler representation of states. Stateless model checking
was introduced in [God97], and it aims at safety analysis of terminating
realistic parallel programs. A stateless model checker usually explores
the state space in a depth-first manner, and it can explore some parts
of the state space multiple times (since it does not store the set of
visited states). Therefore, the requirement that the input program
terminates is necessary to ensure the analysis terminates. In practice,
this requirement is often ensured by imposing loop iteration bounds. If
the program under test requires more iterations of a loop, the loop bound
can be increased, or the analysis can be terminated as inconclusive.

Stateless model checking is also sometimes presented under names
like systematic concurrency testing [CGS13].

State Space Reductions Without additional state space reductions,
SMC would lead to redundant explorations of many parts of the state
space. Indeed, in parallel programs, it is common that two or more
actions of different threads are independent, and regardless of their
order, they lead to the same end state. In this case, a stateless model
checker would explore a state as many times as is the number of paths
from the initial state to this state (in the worst case the number of
paths to a given state can be exponential to its distance from the
initial state). To mitigate this problem, dynamic partial order reduction
(DPOR) [FG05] is often employed with SMC. DPOR is a version of
partial order reduction that tightly integrates with the SMC exploration
algorithm and keeps track of parts of the state space which still need
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to be explored. Using DPOR, SMC can avoid redundant exploration of
equivalent paths in the state space.

Many works are concerned with the design of efficient DPOR meth-
ods both for parallel programs running under sequential consistency
(interleaving semantics) and for various relaxed memory models. It is
usually accomplished by a combination of two aspects: an equivalence
of traces and an exploration algorithm which ensures at least one trace
(and in optimal case exactly one trace) from each equivalence class is
explored. The trace equivalence has to be designed in such a way that
for each of its classes either all traces contain only safe states, or all
traces contain an unsafe state – i.e., the equivalence preserves safety
properties.

Over the years, multiple DPOR techniques were introduced [FG05;
SA07; Tas+12; SKH12; AAJS14; ZKW15; Cha+17; AAJN18; AJLS18;
Abd+19]. Among these techniques, [AAJS14] is interesting since it
provides an optimal algorithm for equivalence based on Mazurkiewicz
traces [Maz87] (where traces are considered equivalent if one of them
can be obtained from the other by swapping adjacent non-conflicting
execution steps). The optimal DPOR presented by [AAJS14] is optimal
for the given trace equivalence (i.e., it explores exactly one execution in
each equivalence class of the used trace equivalence). In recent years,
several works have explored coarser equivalences and optimal algorithms
for them.

In [Cha+17], the authors use a notion of observation of write opera-
tions and consider traces to be equivalent if the corresponding reads
observe the same writes in both traces. However, their algorithm is
optimal only for programs in which the graph of inter-thread communi-
cation is acyclic. A similar notion of observation is used in [AJLS18],
in this case to only consider write events as interfering if at least one of
them can be observed later. In [AAJN18] the authors use a notion of
reads-from equivalence (i.e., trace equivalence based on program order
and reads-from relation which connects reads to writes which produced
the read value) for analysis of a fragment of the C11 memory model that
contains only release and acquire memory orders. The advantage of
this trace equivalence is that it does not distinguish traces which differ
in the order of unobserved writes. The authors argue that working with
this equivalence is easier for release-acquire ordering than for sequential
consistency due to the complexity of checking if a reads-from relation
can correspond to a run of a program. The same trace equivalence is
used in [Abd+19] for sequentially-consistent programs. To avoid the
need for expensive (NP-complete) checks for consistency of reads-from
relations, the authors use two incomplete but polynomial algorithms.
One of them can show that given relation is consistent and one which
can show it is inconsistent, before running the expensive check which is
exponential in the number of threads.

A somewhat different modification of DPOR is presented in [Alb+17].
It uses a notion of context-sensitive independence to improve on pre-
vious DPOR techniques. In essence, it considers two actions a and b
independent in a given state if they can be executed in both as ab and
ba and both executions lead to the same final state. This technique
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uses a (local) state comparison and therefore is not entirely stateless.
This approach was later combined with observers to achieve further
reduction improvements [Alb+19].

Another reduction approach based on observation of read and writ-
ten values is Maximal Causality Reduction (MCR) [Hua15], which can
be seen as an alternative to DPOR. MCR employs an SMT solver to
find new traces to explore, which allows it to explore fewer interleavings
then Mazurkiewicz-trace-based DPOR techniques. Each time a new
trace is found, it is guaranteed that at least one read will read a different
value than read on already observed traces. An advantage of MCR is
that it can be easily modified for parallel exploration (DPOR cannot
be easily executed in parallel). The MCR was also applied to the TSO
and PSO memory models [HH16].

Data Nondeterminism Most works concerning stateless model check-
ing with DPOR expect that thread scheduling is the only source of
nondeterminism in the system [FG05]. However, there are combinations
of SMC with other techniques that can handle nondeterministic data. In
[SKH12], a combination of DPOR with concolic execution is presented.
Another combination of concolic execution with SMC is presented in
[SA07], this one uses a different approach to DPOR then [FG05].

Tools and Techniques VeriSoft [God97; God05] is the pioneering
tool of stateless model checking. It aims at safety verification of re-
alistic parallel programs, primarily in C and C++, but also in other
programming languages – VeriSoft works with compiled executable
programs and uses a custom scheduler to explore (bounded) runs of
these programs. To limit the re-exploration of states and state-space
size, VeriSoft allows scheduling only on visible operations and uses
partial order reduction.

jCUTE [SA07] is a tool that combines concolic execution and state-
less model checking for Java programs, and therefore can handle both
parallelism and data nondeterminism. To explore all possible behaviours
of parallel programs, jCUTE detects data races (concurrent access of
two threads to the same location, at least one of which is a write or a
lock operation) and rearranges schedules which led to them.

CHESS [Mus+08] uses a custom scheduler to drive execution of
compiled executable programs written mainly in C, C++ and .NET lan-
guages such as C#. It uses binary instrumentation to control programs’
scheduling and record order of events. To limit state space explosion,
it explores runs with fewer context switches first and uses a cache of
happens-before graphs of events to avoid redundant explorations (and
therefore is not entirely stateless). To handle the environment of the
operating system better, CHESS can record and relay environmental
values such as current time, process identifiers and output of the plat-
form’s random number generators. However, the user must ensure that
other parts for the environment (e.g., file system, network) are used such
that the program executes the same way if the same thread scheduling
is repeated. The authors argue that this approach is practical for most
unit tests.
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LCT [SKH12; KSH13] is another tool which combines concolic
execution and SMC to handle parallel Java programs with data nonde-
terminism. It uses program instrumentation to add symbolic operations
where needed and allows scheduling to happen only on visible actions.
To speed up the analysis, LCT can run multiple executions of the
program with different inputs in parallel and distribute them over the
network.

SATCheck [DL15] is a stateless model checker for C programs with
support for sequential consistency and TSO. It records dependencies
between program events and uses SAT solver to reorder the events on
a concrete run to get new interleavings with new behaviour.

rInspect [ZKW15] is an LLVM-based stateless model checker for C
programs running under the TSO and PSO relaxed memory models.
It uses store buffers and shadow threads that flush values from store
buffers to the main memory. Store buffers can be optionally bounded.
The shadow thread approach allows it to use existing DPOR techniques
designed for sequential consistency.

The maximal causality reduction (MCR) is implemented in an
unnamed tool for analysis of Java programs [Hua15; HH16]. It supports
both sequential concurrency and the TSO and PSO relaxed memory
models.

CDSChecker [ND16] is a stateless model checker for C and C++
with support for the C11/C++11 memory model (with the exception
of release-consume synchronisation and out-of-thin-air values which are
discouraged by the standard, but the C11/C++11 memory models allow
them). It can simulate load speculation and delays by forwarding stored
values to previous loads and validating this speculation. CDSChecker
primarily aims to help with unit testing concurrent data structures.

Concuerror [CGS13; AAJS14; AJLS18] is an SMC for Erlang pro-
grams. In Erlang, the primary way of communication between processes
is message passing. Concuerror uses context bounding and contains
an implementation of the optimal DPOR for Mazurkiewicz traces and
optimal DPOR based on observers.

Nidhugg [AAJL16; Abd+17; AJLS18; Abd+19], is a stateless model
checker that focuses on C programs running under relaxed memory
models. It has support for sequential consistency, TSO, PSO, POWER,
and partially ARM memory models. For TSO and PSO, Nidhugg uses
the optimal DPOR algorithm from [AAJS14] to explore exactly one
execution from each equivalence class given by chronological traces which
capture dependencies between memory operations. The combination
of chronological traces and optimal DPOR algorithm means that for
programs that do not exhibit relaxed behaviour under TSO/PSO,
Nidhugg explores the same number of traces under TSO/PSO as it
would explore under sequential consistency. For POWER, Nidhugg uses
a different algorithm which can perform a redundant exploration of
incomplete traces but does not generate redundant complete traces (for
the trace equivalence given by Shasha-Snir traces [SS88]). Nidhugg also
has an option to use a reads-from-based trace equivalence for sequential
consistency, together with an optimal exploration algorithm for this
equivalence. This equivalence does not distinguish traces that differ

http://dx.doi.org/10.1109/ACSD.2012.18
http://dx.doi.org/10.1109/ACSD.2012.18
http://dx.doi.org/10.1109/ACSD.2012.18
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2013.09.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2013.09.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2013.09.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2013.09.002
http://dx.doi.org/10.1145/2858965.2814297
http://dx.doi.org/10.1145/2858965.2814297
http://dx.doi.org/10.1145/2858965.2814297
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1145/2737924.2737956
http://dx.doi.org/10.1145/2813885.2737975
http://dx.doi.org/10.1145/2813885.2737975
http://dx.doi.org/10.1145/2813885.2737975
http://dx.doi.org/10.1145/2813885.2737975
http://dx.doi.org/10.1145/3022671.2984025
http://dx.doi.org/10.1145/3022671.2984025
http://dx.doi.org/10.1145/3022671.2984025
http://dx.doi.org/10.1145/2806886
http://dx.doi.org/10.1145/2806886
http://dx.doi.org/10.1145/2806886
http://dx.doi.org/10.1109/ICST.2013.50
http://dx.doi.org/10.1109/ICST.2013.50
http://dx.doi.org/10.1109/ICST.2013.50
http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1007/978-3-319-89963-3_14
http://dx.doi.org/10.1007/978-3-319-89963-3_14
http://dx.doi.org/10.1007/978-3-319-89963-3_14
http://dx.doi.org/10.1007/978-3-319-41540-6_8
http://dx.doi.org/10.1007/978-3-319-41540-6_8
http://dx.doi.org/10.1007/s00236-016-0275-0
http://dx.doi.org/10.1007/s00236-016-0275-0
http://dx.doi.org/10.1145/3360576
http://dx.doi.org/10.1145/3360576
http://dx.doi.org/10.1145/3360576
http://dx.doi.org/10.1145/3360576


3.3 SYMBOLIC AND CONCOLIC EXECUTION | 39

[SS88] Shasha et al., “Effi-
cient and Correct Execu-
tion of Parallel Programs
That Share Memory”.

[KLSV17] Kokologiannakis
et al., “Effective Stateless
Model Checking for C/C++
Concurrency”.

[Lah+17] Lahav et al., “Re-
pairing Sequential Consis-
tency in C/C++11”.

[AAJN18] Abdulla et al.,
“Optimal Stateless Model
Checking under the Release-
Acquire Semantics”.

[Kin76] King, “Symbolic
Execution and Program
Testing”.

5 SAT solvers are used
for propositional formulas
while SMT solvers can solve
first-order formulas that
use some theory, for exam-
ple, the theory of bitvec-
tors which can be used to
precisely model computer
integers. The advantage
of SMT solvers is that the
encoding is simpler and the
solver can make use of the
additional information en-
coded in the richer theory.

only in the order of conflicting writes and therefore can be exponentially
more coarse. The corresponding algorithm needs to decide if a given
read-from relation is consistent, which is an NP-complete problem.
However, the authors show that the expensive check can be avoided in
most cases by use of faster but incomplete checks. Nidhugg uses LLVM
to avoid the cost of direct analysis of C programs.

RCMC [KLSV17] is a stateless model checker for C and C++
programs running under the RC11 memory model [Lah+17] (which is
an attempt to formalise and fix the C11 memory model). Instead of
exploring interleavings, the tool uses execution graphs which represent
visible program actions and dependencies between them.

Tracer [AAJN18] is a tool for analysis of the release-acquire fragment
of the C11/C++11 relaxed memory model. It can work with C and
C++ programs that do not use any other atomic orderings than release
and acquire, i.e., it has no support for sequentially consistent or relaxed
atomics. Tracer does not explore all possible orderings of conflicting
writes; instead, the equivalence relation at the core of their DPOR
implementation is given only by program orders and read-from to
avoid redundancy. The proposed exploration algorithm is optimal
for traces defined on this equivalence. In practice, this means that
nondeterministic decisions take place at read operations and writes are
only recorded, and backtracking is used for cases when a previous read
might read from a later executed write.

3.3 Symbolic and Concolic Execution

Symbolic execution was introduced in [Kin76]. It executes the program
with symbolic values instead of concrete once and tracks the relations
between these symbolic values. When a symbolic value is used in a
conditional branch, the symbolic executor can follow one or both of
the branches based on the concrete values which are permitted by the
symbolic values. If both of the branches are followed, the corresponding
branching condition (or its negation) is added to the path condition.
Therefore, the path condition collects the constraints required to get
to the given code location. Symbolic executors usually use SAT or
SMT solvers to decide which paths can be taken.5 Unlike previously
discussed techniques, symbolic execution mostly targets sequential
programs with inputs, i.e., it deals primarily with data nondeterminism
and not scheduling nondeterminism. For this thesis, symbolic execution
is notable because symbolic executors often have good support for
real-world programs, including programs that use libraries and interact
with their environment.

The state space explored by a symbolic executor forms a tree with
branches at conditions. This symbolic execution tree can be quite large
even for small sequential programs with loops or recursion – this is the
problem known as path explosion.6 The symbolic execution tree can be
explored in different manners (e.g., depth-first search, random search)
depending on the objective of the analysis, for example, if it is desirable
to explore all the behaviours of the program, or if some representative
sample should be analysed for the purpose of testing.
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6 Consider this code:
unsigned x = input();
while (x > 0) {

do_work(x);
x--;

}

Its symbolic execution tree
has as many branches
as there are values in

the unsigned data type:
x = α

if (x > 0)

�
[α = 0]

do_work(x);

x--;

if (x > 0)

�
[α = 1]

do_work(x);

x--;

if (x > 0)

�
[α = 2]

...
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Test Generation Symbolic execution can be used to generate con-
crete test cases for a program (or a function) – each time the executor
finishes a path (either the program terminates, or an error is found), it
can use a solver to generate concrete inputs that reproduce this path in a
test case [CDE08]. This way, it is possible to generate tests which cover
the program well and do not execute the same path repeatedly. Even if
the symbolic execution tree is large or infinite, the test generation can
use random search or some other heuristics to provide good coverage of
the code and therefore improve on manually-written tests. Furthermore,
tests generated from symbolic execution can be very useful for bug
fixing as the programmer can use their debugging tools of choice on
the generated test and do not need to learn a verifier-specific way to
analyse the counterexample.

Concolic Execution Concolic Execution, also knows Concolic Test-
ing, Dynamic Symbolic Execution or Directed Automated Random Test-
ing is a modification of symbolic execution which can eliminate some of
the expensive solver queries issued during exploration [GKS05; SMA05].
With concolic execution, the program is executed with concrete values
and it follows a single run, but the concolic executor records the path
condition as with conventional symbolic execution. When the run fin-
ishes, the executor uses the path condition and a solver to find values
of input variables that will lead the program to follow a different path.
This is repeated until no more paths can be discovered, or until the
given coverage criteria are met.

Tools CUTE [SMA05; MS07] is a concolic test generator for sequential
C programs that specializes at dynamic memory. It can generate input
values for pointers (e.g., linked list nodes) as well as scalars. CUTE uses
approximate constraints for pointers to prevent undecidable theories
(pointer constraints can contain pointer (in)equality and check for NULL
pointers). It detects assertion violations, memory access errors, and
certain cases of infinite loops. Furthermore, CUTE has support for
hybrid concolic testing, which combines concolic and random testing. It
targets reactive programs and primarily uses random-generated inputs.
In this mode, concolic input generation is used to avoid getting stuck
(i.e., the tool will switch to concolic input generation if it fails to add
to coverage in a certain number of randomized tests).

KLEE [CDE08] is a symbolic executor and test generator that
targets realistic C and C++ programs that communicate with the
environment. Its goal is to work with unmodified programs (with source
code available, the program needs to be compiled to LLVM). KLEE can
check for memory safety and assertion safety violations. It uses array
theory with a separate array for each memory object to facilitate analysis
of programs with dynamic memory. In KLEE, symbolic pointers are
handled by explicit enumeration of all possibilities when the pointer is
dereferenced. To achieve good coverage even when time and the size of
the symbolic execution tree do not allow for full exploration, KLEE uses
path selection heuristics. KLEE is notable for its support of realistic
programs that communicate with their environment. It has models of
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some of the POSIX system calls (mostly related to the file system) and
these models can contain symbolic values (e.g., in files). The system
call models are written in C and can be modified without modification
of KLEE itself. Furthermore, the program running in KLEE can also
access the real file system, and KLEE can perform fault injection into
system calls. When an error is encountered, KLEE generates a test
harness which creates the corresponding files and fills them with values
which reproduce the problem. To support the C standard library, KLEE
uses uClibc standard library implementation, which is linked to the
program under analysis.

Symbiotic [CSV18; Cha+20] is a tool for analysis of sequential C
programs which uses KLEE symbolic executor as a backend. It can
detect assertion violations, memory safety errors, memory leaks, and
integral overflows. Symbiotic uses instrumentation to add pointer checks
where needed and uses various analysis techniques (e.g., pointer analysis
and shape analysis based on Predator [DPV13]) to limit the number
of inserted checks. Furthermore, Symbiotic uses program slicing to
remove code irrelevant for the property. Symbiotic has basic support for
the detection of termination and nontermination. It can detect simple
cycles in the program’s state space and therefore in some cases decide
the program does not terminate (for non-nested loops that preserve
values of all variables). It can also conclude the program terminates if
all paths were explored.

Pinaka [CJ19] is a symbolic executor for sequential C programs which
uses incremental solver to check path feasibility. It can run either in a
fully incremental mode where it reuses one solver instance for the whole
program, which can cause big formulas or in a partially incremental
mode which creates a new instance of the solver on backtracking. Pinaka
may not terminate on nonterminating programs, and it has an option
for loop unwinding limit. It can be used to show termination – if a
program is found to be safe without any unwinding limit, then all its
paths terminate.

JDart [MH20; Luc+16] is a concolic executor and test generator
for sequential Java programs build on Java Pathfinder. It can detect
assertion violations and uncaught exceptions. JDart attempts to find
small values for symbolic variables, which can make loops depending
on symbolic values shorter.

Java Ranger [Sha+20] is a symbolic executor for Java based on
Symbolic Pathfinder. It can merge paths using summarization of regions
with multiple paths (e.g., branches of an if statement).

COASTAL [VG20] combines concolic execution with fuzz testing
for Java programs. It uses fuzz testing for fast exploration; the fuzzing
mode only tracks the direction of branches. Concolic execution can be
used to get to parts of the program’s state space which are harder to
reach. COASTAL can explore different parts of the symbolic execution
tree in parallel (with different fuzzer or concolic executor instances).
To help with the analysis of realistic programs, COASTAL has models
for some of the standard Java classes.

Map2Check [RMCB20] is a tool which combines fuzzing, symbolic
execution, inductive invariants for safety checking for sequential C
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programs. It is LLVM based and uses Klee as a backend symbolic
executor. The idea of this combination is that fuzzing is used to find
shallow bugs, while symbolic execution finds deep bugs. Map2Check
runs multiple fuzzers in parallel.

3.4 Bounded Model Checking & Other Sym-
bolic Techniques

Bounded model checking (BMC) was introduced in [BCCZ99] as an
alternative to symbolic model checking techniques which used binary
decision diagrams. BMC encodes program runs of fixed length into
propositional formulas, or to formulas over some first-order logic. It then
relies on SAT or SMT solvers to decide whether the formula is satisfiable
or not. One of the advantages of BMC is that it naturally handles data
nondeterminism and can cope with scheduling nondeterminism too.

The original paper introducing BNC presented a verification proce-
dure for LTL (which detected loops in the program runs by checking
equality of the last state of a bounded run to some of its previous
states). However, for realistic programs, the focus is mainly on safety
properties, and more recently also on (non)termination.7

BMC tools usually build formula from an SSA form8 of the program
with a bounded number n of loop iterations and recursion depth [CKL04].
The loops and recursive functions are unwound – repeated n times with
guard before each repetition which allows the program to skip the
repetition if the number of iterations was lower then n. Furthermore,
unwinding assertions are inserted after the last repetition to ensure
the unwinding was sufficient. The result is that all jump lead forward,
which simplifies the creation of the logic formula which describes the
transition function of the program.

Parallelism We have categorized the existing approaches to paral-
lelism in BMC into thee broad categories. The conceptually simplest is
to explicitly enumerate symbolic context-switch bounded runs of the
program and then encode them to resolve symbolic data. This approach
is used by ESBMC [CF11] and by [RG05] for an early concurrent exten-
sion of CBMC. Another approach is to encode the control flow of threads
separately and add scheduling constraints which specify inter-thread
ordering. This approach is used by CBMC [AKT13] and also proposed
in [GG08]. The last approach is sequentialization, which makes use of
a BMC for sequential programs and a preprocessing step that converts
a parallel program into a nondeterministic sequential program. Many
sequentialization schemes were proposed, differing both in the size of
the encoding and the way they limit thread interaction (e.g., limit
to the number of context switches, to the number of shared-variable
interactions) [QW04; LR09; Inv+15; Tom+16; Tom+17].

Path Bounding The main limitation of BMC is that it explores
only runs up to some length bound k. Therefore, BMC alone cannot
prove correctness unless it shows that the loop bound was sufficient
(for example, by showing unwinding assertions are not violated). To
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mitigate this limitation, BMC can be combined with other techniques
which aim to prove correctness of the program, such as k-induction or
IC3.

k-Induction k-induction [DHKR11; GIC17] is an extension of
bounded model checking which allows it to find bugs faster and to
prove correctness of programs without unwinding loops fully. Multiple
k-inductions schemes exist, in the one proposed in [GIC17] a verifier
with k-induction repeatedly performs following three steps with an
increasing bound k.

• Base Case checks if an error is reachable in k steps.

• Forward Condition checks if all program’s paths had terminated
in k steps (i.e., the tool had already explored all states, and
therefore the verification is done).

• Inductive Step checks a formula corresponding to the following
proposition: if the property holds for the first k steps, it also holds
for k+1 steps. This step is checked in a modified program in which
all loop variables are initialised to nondeterministic values before
the loops, and the loops are required to execute to completion.9

One of the problems with k-induction is that the induction argument
may not be strong enough to prove the inductive step. For this reason,
the induction can be strengthened by invariants derived from the original
program (i.e., the invariant constraints the nondeterministic values of
loop variables) [RICB17].

IC3/PDR Another symbolic technique that uses solvers is IC3
(Incremental Construction of Inductive Clauses for Indubitable Correct-
ness), also known as Property Directed Reachability (PDR). It verifies
a system without unrolling its transition relation and uses a lot of
relatively small solver queries (while BMC usually encodes the whole
program into one big query). IC3 iteratively builds approximations of
reachable safe state space and refines them once it finds a step that
leads from the set of already discovered states to an unsafe state. The
refinement works backwards from the predecessor of the unsafe state. If
the refinement reaches the initial state, the analysed system is incorrect.
Solver queries in IC3 concern separate steps in the state space (not
entire paths).

IC3 was initially introduced in the context of hardware (circuit)
verification [Bra11] and refined later as property directed reachability
(PDR) [EMB11]. It was later extended to software using SMT solvers
[CG12]. The SMT-based IC3 can also handle software with infinite
state space. Software IC3 was also combined with predicate abstraction
in multiple ways including Implicit Predicate Abstraction [CGMT14]
and Counterexample to Induction-Guided Abstraction-Refinement (CTI-
GAR) [BBW14]. IC3 was also combined with k-induction to strengthen
the inductive step of k-induction [BD20].
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Tools The original bounded model checker BMC [BCCZ99] was an
LTL bounded model checker that targeted a modelling language.

F-Soft [Iva+05] is a tool for safety analysis of sequential C programs.
It supports both BMC and BDD-based model checking.10 It uses pro-
gram slicing and predicate abstraction to improve analysis performance.
An interesting property of F-Soft is that it can generate executable
counterexamples.

CBMC [CKL04; KT14] is a widely used SAT-based bounded model
checker for sequential and parallel C programs. It uses bit-precise
encoding and therefore preserves the semantics of computer integers.
CBMC can detect safety errors, and it uses instrumentation for detection
of errors other than assertions. For efficient analysis of parallel programs,
CBMC uses encoding based on partial orders described in [AKT13] –
it builds the formula from the SSA form of each thread and ordering
constraints for shared variables. CBMC is notable for its support of
relaxed memory models, including x86-TSO, PSO and partially the
POWER memory model, as well as sequential consistency [AKT13].
CBMC uses a custom parser for C.

ESBMC [Gad+18; GMCN19], is another widely used BMC for C pro-
grams. It can detect assertion violations, memory errors, overflows and
mutex-caused deadlocks. ESBMC was derived from CBMC, but it uses
SMT for the encoding of the program and has support for k-induction
with invariant generation (based on interval analysis of integral vari-
ables). The invariant generation is currently unsound for programs with
pointers. The support for concurrency in ESBMC is described in [CF11].
ESBMC explores possible program interleavings explicitly and collects
constraints on nondeterministic variables, which are then used to gener-
ate a formula. The formula can be generated and solved either for each
run separately (lazy approach, has the advantage of being incremental),
or all interleavings can be encoded into one formula that uses guards
to encode scheduling of each interleaving (schedule recording). There
is also an encoding based on under-approximation and widening that
attempts to produce more compact encoding. The approximation uses
proofs of unsatisfiability of the formula for refinement. According to
[CF11], the lazy approach seems to work best. Regardless of the formula
encoding, ESBMC uses a bound on the number of context switches. To
limit the number of runs which need to be explored, ESBMC allows
context switches only at visible instructions (i.e., instructions which
access shared memory). The handling of parallelism in ESBMC makes
it closely related to explicit-state model checkers with symbolic ex-
tensions, like Symbolic Pathfinder or DIVINE. Similarly to CBMC,
ESBMC used a custom C parser, but it had later switched to using
the clang compiler for parsing C, and there is ongoing work for using
this parser for C++. Unlike other tools which use clang, ESBMC does
not use the LLVM intermediate representation but instead builds its
internal representation based on the C/C++ AST produced by clang.
Furthermore, ESBMC has derivatives which aim at C++ verification.
ESBMC++ [Ram+13] uses a model of parts of the standard C++
library, has support for C++ exceptions and inheritance. ESBMCQtOM

[SCL15; GMCL16] adds a model of parts of the Qt framework for C++
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programs. In both cases, these models approximate behaviour of the
respective libraries based on the standard or documentation.

JBMC [CKS19; Cor+18], is a bounded model checker for Java
built on the same basis as CBMC. It uses a combination of SAT and
SMT solving with a dedicated solver for string operations. JBMC has
support for exceptions (by lowering them to jumps in its intermediate
representation) and has an exact verification-friendly model of most
common parts of the Java standard libraries. It can detect assertions,
memory errors, integral overflows and type casting errors. JBMC has
currently no support for threads, and it also lacks support for the Java
Native Interface (JNI) and reflection.

LLBMC [MFS12; FMS13] is an SMT-based, bit-precise BMC for
sequential C and C++ programs that is notable for its use of the LLVM
intermediate representation which allows it to reuse existing C and C++
compilers. It is also one of the few tools which claim support of C++.
However, the C++ support has some limitations, most notably, there
is no support for exceptions and run-time type support. Furthermore,
LLBMC has no support for threads and floating-point arithmetic in
both C and C++. It can detect assertion violations, integer overflows,
invalid shifts, memory errors and memory leaks.

Another LLVM-based tool is LLVMVF [SS13], a generic verification
framework on which a BMC for parallel programs is built. Concurrency
support in LLVMVF is incomplete; for example, it lacks support for
condition variables.

An older version of Map2Check [RBC15] was a test generator for
memory safety and leak detection unit tests for C programs. It uses
ESBMC to extract verification conditions (conditions of memory safety
violation). Then it instruments the program to convert memory safety
to assertions about pointers and runs the tests with concrete data.

Yogar-CBMC [Yin+18; YDLW19] is a derivative of CBMC that uses
abstraction and refinement for the encoding of scheduling constraints in
parallel programs to make the formulas smaller. Unlike CBMC, it has no
support for relaxed memory. It can run multiple counterexample-guided
refinement loops in parallel, and they share the learned scheduling
constraints to analyse the program faster. Yogar-CBMC was able to
solve all concurrency benchmarks in SV-COMP 2019 and significantly
outperformed CBMC.

CBMC-Path [KT19] is another derivative of CBMC. It encodes
paths in the state space one by one instead of building a formula for
the whole (bounded) state space of a parallel program. While it was
designed to facilitate faster bug discovery for SV-COMP, it performed
significantly worse than CBMC.

DepthK [RICB17; Roc+17], is a tool based on ESBMC with the
addition of polyhedral invariants which aim to strengthen inductive
step in the k-induction. It was presented before ESBMC gained the
ability to compute invariants itself, and it uses an external invariant
generator. DepthK can analyse concurrent C programs.

Dartagnan [PFHM20; Gav+19] is a BMC for analysis of parallel
C programs under relaxed memory models. In this case, the relaxed
memory model is specified on input, not encoded in the verifier. To
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achieve this, Dartagnan uses symbolic encoding of relations between
the program’s actions (data dependencies, reads-from, program order,
. . . ) and the memory model restricts the possible runs based on these
relations. It should be possible to use Dartagnan with a wide range
of memory models including x86-TSO, ARMv8, POWER, C/C++11
and Linux kernel memory model. To speed up the analysis, it uses
relation analysis that reduces the size of the encoding – it determines
which pairs of events may influence constraints specified by the memory
model. Dartagnan internally uses Boogie intermediate language and
translates C to it using SMACK [RE14]; it lacks support for pointer
arithmetic.

Lazy-CSeq [Inv+15; Ngu+17; IT20] is a sequentialisation-based
tool for analysis of concurrent C programs which uses bounded model
checker as a backend (CBMC by default). It performs source-to-source
transformation from a concurrent C program to a sequential C program.
The sequential program simulates a bounded number of round-robin
scheduling rounds (i.e., the number of context switches is limited, and
the threads are required to execute in a fixed order, with the possibility
to perform no steps in a given round). This way, Lazy-CSeq can simulate
a bounded number of interleavings with small memory overhead while
limiting added nondeterminism. It can detect errors detectable by
the used backend and POSIX mutex deadlocks. To speed up analysis,
Lazy-CSeq uses Frama-C [CCM09] to infer bounds of integral variables
and shrink the corresponding bitvector formulas. Lazy-CSeq performs
lazy sequentialisation, i.e., it explores only the reachable state space of
the program, unlike some older works on sequentialisation like [LR09].
Lately, support for parallelisation by partitioning the set of execution
traces into independent instances was added to Lazy-CSeq.

MU-CSeq [Tom+15; Tom+16] and IMU-CSeq [Tom+17] are se-
quentialisation-based tools for analysis of concurrent C programs that
use CBMC as a backend. They work by nondeterministically guessing
a bounded sequence of shared memory writes and then simulating
the program so that its runs match this sequence. Optionally, they
can also execute unobserved memory writes which are not part of
the sequence. The difference between the tools is that IMU-CSeq
uses a separate sequence for each memory location, while MU-CSeq
has a single sequence of visible memory operations. IMU-CSeq also
has support for relaxed memory (TSO, PSO) using Shared Memory
Abstraction, which defines the behaviour of memory operations and
synchronisation primitives of the given memory model. These tools
perform eager sequentialisation, i.e., threads are executed separately,
with nondeterministic values for shared memory reads which connect
them.

BLITZ [CDS13] is a BMC for C programs that decomposes the
verification instance using approximations of preconditions of property
violation. These approximations are gradually refined based on the
proofs of unsatisfiability for the under-approximated instances. It aims
to detect assertion violations and memory safety in larger programs
(100kloc). BLITZ appears to have no support for parallelism.

TCBMC [RG05] is an early extension of CBMC to parallel programs.
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It uses context switch bounding, and the authors proposed mutex dead-
lock detection and race detection for it. However, the implementation
supported only two threads without deadlock detection.

CheckFence [BAM07] is a tool for checking implementations of
concurrent data structures in C against a relaxed memory model which
is an over-approximation of many hardware memory models (i.e., safety
in CheckFence should imply safety under these memory models). It uses
a test program as a specification – it checks if the set of all executions
under the given memory model is a subset of a set of serial executions
which are sequentially consistent executions in which each operation
with the data structure is atomic. Therefore, CheckFence does not
detect properties such as assertion violation or memory safety but
considers the program unsafe it if can exhibit new behaviour under its
relaxed memory model. CheckFence encodes threads and scheduling
separately.

NBIS [GW14] is an incremental BMC for sequential C programs.
In this case, incremental means that it can change bounds without
throwing away the formula and re-running the solver (provided the
solver can support incremental solving, which is common). NBIS uses
LLVM IR to facilitate analysis of C programs.

VVT [GLW16; GLSW17] is a successor to NBIS which combines
bounded model checking for fast bug discovery with CTIGAR, an SMT-
based version of IC3 with counterexample refinement. It aims at the
analysis of parallel C software and uses LLVM IR internally. VVT can
analyse infinite-state systems (with a finite number of threads and with
arrays with statically known bounds). To improve performance with
parallel programs, VVT uses dynamic state-space reduction based on
conditionally atomic blocks of code (which are instrumented into the
code). VVT is not bit-precise, it uses integer arithmetics instead of
arithmetics with overflows and therefore cannot find problems caused
by bounded bitwidth of computer integers.

power2sc [AABN17] is a tool for analysis of C programs under
the POWER memory model which uses CBMC as a backend. It uses
program transformation to build a new program which, when executed
under sequential consistency, simulates context-switch-bounded runs of
the original program under POWER. The transformed program relies
on nondeterminism to guess the results of interactions between threads
and then checks the validity of these guesses. While the presented
tool uses CBMC, the authors claim that their program transformation
can work with any verifier for safety-checking parallel program under
sequential consistency.

3.5 Other Approaches to Program Analysis

There are many program analysis techniques relevant to realistic parallel
programs which were not covered in the previous sections. These
techniques are often very different, and categorising them does not
seem to provide many benefits. Therefore, we will now outline these
techniques as they are represented by notable tools that implement
them.
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Tools Ultimate Automizer [Hei+17; HHP13] is a program analysis
tool for sequential and parallel C programs. It uses automata-theoretic
verification approach which, in essence, converts a program to an au-
tomaton (starting with an automaton derived from the control-flow
graph), and then checks reachability of error states in this automaton
and possibly refines it. The automata are constructed in such a way that
the set of traces of the automaton over-approximates program traces.
Therefore, if the automaton cannot reach an error location, the program
is correct. If the automaton can reach an error location, the feasibility
of the error trace is checked, and if it is not feasible, the automaton is
refined (otherwise an error was found). Therefore, automata-theoretic
verification is an instance of CEGAR. The refinement is performed
by the construction of automaton of spurious traces – Floyd-Hoare
automaton – which is constructed on-demand using an SMT solver.
Furthermore, Ultimate Automizer uses nested words automata for inter-
procedural analysis. It also uses Büchy automata and ranking functions
for termination and nontermination analysis. Ultimate Automizer can
detect assertion violations, memory safety errors, check for integral
overflows, and termination.

Ultimate Taipan [Die+20; Gre+17] is a close relative of Ultimate
Automizer that uses refinement based on path programs. When a
possible error is found, it projects the original program into the error
trace to obtain a corresponding path program that can contain loops
and only contains statements found on the trace. It then attempts to
show trace infeasibility by proving unreachability of the error location
in the path program using invariants.

Ultimate Kojak [NDMP15] is another related tool which uses a
different algorithm for the refinement step. This algorithm is based on
proofs of unsatisfiability provided by an SMT solver used to check the
feasibility of error paths.

Skink [Cas+17] is an LLVM-based tool for assertion checking of
sequential and concurrent C programs. It uses the automata-theoretic
verification approach similar to Ultimate Automizer (with automata-
based refinement). However, Skink is limited to programs which can be
fully inlined, i.e., it does not support function calls. Furthermore, it
uses mathematical integers and therefore is not bit-precise. To improve
efficiency with parallel programs, Skink uses reduction based on the
source-DPOR algorithm used more often in stateless model checking
[AAJS14].

CPAchecker [DLW15; BK11; BD20] is a program analysis tool for
C programs and a modular framework which aims at easy integration
of new components and research of new verification ideas. It uses a
combination of abstract domains and has support for various tech-
niques such as k-induction, predicate abstraction, and property directed
reachability (PDR/IC3). To avoid false counterexamples, CPAchecker
performs bit-precise validation of counterexamples. Various tools build
on the CPAchecker framework are participating in the SV-COMP. It
appears that CPAChecker without additional extensions participates in
SV-COMP under the name CPA-Seq.

CPA-BAM-BnB [And+17] is a CPAchecker-based tool that uses
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Block Abstraction Memoization, which means it divides programs into
blocks (often a block is a function) and analyses blocks separately.
It uses a cache of existing block abstractions. Furthermore, it uses
value analysis and predicate analysis with refinement on spurious coun-
terexamples. It also uses BnB, which is a model of memory that uses
predicate analysis and uninterpreted functions to map memory locations
to memory values. In this model, memory is split into regions, and
each region has its mapping function.

CPALockator [AMK18] is a version of CPAchecker which specialises
on parallel programs and data race detection. CPALockator aims to
provide a lightweight analysis at the cost of possibly missing errors. To
do this, it tracks locks and threads that are active at the given time.
CPALockator uses predicate analysis and CEGAR to exclude spurious
race conditions.

PeSCo [RW19; CHJW17] is a tool build on top of CPAchecker that
tries to predict efficient verification approach for a given task using
machine learning. The learning uses graph encoding of programs and
decides which of the six predefined configurations of CPAchecker should
run and in which order.

Corral [LQL12] is a verifier for the Boogie modelling language
accompanied by language frontends for C and .NET bytecode. It
performs bounded reachability and uses abstraction and refinement.
Abstracted programs track values of only a selected set of variables
(which is initially empty). On top of that, functions are inlined on-
demand if an over-approximation of a function’s effects causes a spurious
error. Corral supports parallel programs using sequentialisation.

SMACK [RE14; Car+16; GBHR20] is a bug-finder for various pro-
gramming languages that can be translated to LLVM. It translates
LLVM IR into Boogie intermediate verification language and then uses
Boogie, Corral (default) or other Boogie-based verifiers as a backend.
This approach is intended to allow easy prototyping of backend verifiers
which do not need to handle some of the complexities of programming
languages. SMACK can use either bitvectors (i.e., be bit-precise) or
arbitrary precision integers. Since Boogie has no support for dynamic
memory, SMACK partitions memory into disjoint regions that are rep-
resented by maps in Boogie. While SMACK initially targeted C, it
was later extended to (partially) support various other programming
languages that can be translated to LLVM: C++, Rust, Objective-C,
D, Fortran, Swift, and Kotlin. In this effort, SMACK relies heavily on
LLVM-based language frontends to provide basic language support. On
top of that, SMACK has basic support for standard libraries (allocation,
C string and math operations, POSIX threads, models of most common
parts of the libraries). However, the authors claim these models must
be written manually, which they consider being a major undertaking.
This is shown to be a limiting factor, especially for languages with
heavy runtime components, such as Swift, Objective-C and Kotlin.
Furthermore, thanks to compilation to a common intermediate repre-
sentation (LLVM), SMACK has support for cross-language program
analysis. With a concurrency-enabled backend (e.g., Corral), Smack
also supports parallel programs.
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JayHorn [KRS19] is a tool for analysis of sequential Java programs.
It encodes programs into Horn clauses and can handle some instances
of unbounded heap data structures and unbounded execution using
invariants. JayHorn is not bit precise (it uses unbounded integers) and
has only a basic model of Java library (it mostly assumes library calls
return arbitrary values).

Threader [GPR11] is a tool for compositional verification of parallel
C programs. It uses thread-modular proofs based on proof rules from
[Jon83; OG76]. The analysis is based on abstract reachability with
refinement and uses a Horn clause solver. Threader can detect safety
violations and termination properties and is not limited to specific
synchronisation primitives.

Predator and PredatorHP [PŠV20; DPV13] are tools for checking
memory safety of sequential C programs. Predator uses shape analysis;
i.e., it describes the shape of heap memory by an abstract domain
(symbolic memory graphs). It targets memory errors and assertions and
can handle unbounded lists (both doubly- and singly-linked, circular,
and nested lists). Predator has only a limited ability to handle non-list
types. To avoid parsing C directly, Predator uses an intermediate
representation of the GCC compiler. PredatorHP is a tool which runs
several configurations of Predator in parallel (a verifier which can prove
correctness but over-approximates and several bug hunters which can
show incorrectness).

SatAbs [CKSY05] is a tool for bit-precise analysis of (possibly
parallel) C programs. It uses predicate abstraction with counterexample
guided refinement to decrease the size of the analysed program – the
program is abstracted into a boolean program which is analysed by a
backend model checker. If the backend model checker concludes the
abstracted program is correct, then the original program is correct.
Otherwise, the trace of the abstract program is validated using SAT-
queries that simulate the corresponding path of the original program. If
the counterexample is spurious, SatAbs refines the abstraction. SatAbs
uses bitvectors (bit-blasted to SAT formulas11) and therefore is bit-
precise. It can perform reachability and equivalence checking of a C
program and the corresponding Verilog circuit.

An unnamed tool that encodes the behaviour of relaxed memory
models in a program is presented in [AKNT13]. Given a C program
which is supposed to run under one of the supported relaxed memory
model (including x86-TSO and a fragment of POWER) it transforms it
into an equivalent program which can be analysed by an analyser for
sequentially consistent parallel programs. The authors evaluate their
approach with various backend analysers, including CBMC, ESBMC,
and SatAbs. The encoding of relaxed behaviour uses an abstract event
graph that encodes events of the program and dependencies between
them.
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Off-the-Shelf Exception
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C++ Verification”.

1 Using pointer arithmetic
it is possible to access ele-
ments of arrays and data
structures by numeric ma-
nipulation of pointer values.

2 Templates allow the pro-
grammer to write a generic
code which does not de-
pend on concrete types, the
compiler is then responsible
for the generation of im-
plementations for concrete
types the code is used with.

3 C++ compiler can auto-
generate code that handles
copying, creation and de-
struction of objects, and
since C++20 also compar-
ison of objects. Of course,
the programmer can over-
ride the default behaviour
if it is not sufficient, for ex-
ample, when implementing
resource abstractions.

Chapter 4

Improvements in Analysis of
Realistic Programs

Text of this chapter is in part extension of [ŠRB17]. The text was
brought up to date with certain implementation details of DIVINE and
extended with the wider context of analysis of realistic programs in
DIVINE. The evaluation is unmodified from the original paper.

An essential step toward the adoption of formal methods in software
development is support for mainstream programming languages. These
languages are often rather complex and come with substantial standard
libraries. However, by choosing a suitable intermediate language, most
of the complexity can be delegated to existing execution-oriented (as
opposed to verification-oriented) compiler frontends and standard li-
brary implementations. In this chapter, we describe how support for
C++ exceptions in DIVINE can be done by using these principles and
how they are applied to support of C and C++ and their standard
libraries.

As we have already outlined in Section 1.1.1, realistic programs have
many features not present in verification-centric modelling languages.
For example, C has dynamic memory, pointer arithmetic,1 and function
pointers. Languages with support for object-oriented programming
like C++, C#, and Java have inheritance and dynamic dispatch of
member functions based on the runtime type of the object they are
called on. Many languages also have exceptions which allow for a
non-local transfer of control between functions. C++ is particularly
complex, with features like function and class templates,2 inheritance
with multiple base classes, runtime type information (RTTI), compiler-
generated special member functions,3 and support for threads and
thread synchronisation including low-level atomic access. Furthermore,
many of these languages are also under constant development. For
example, C++ releases a new standard every three years since 2011,
with major new language and library features added in each new revision.
C++ compilers and standard libraries that keep up-to-date with the
standard are usually developed either by big companies like Microsoft
or Intel or by community efforts like GCC and clang (with clang being
also supported by Apple).

http://dx.doi.org/10.1109/QRS.2017.15
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Considering the efforts put into compiler development and the com-
plexity of programming languages like C++, it makes sense to reuse
as much of the existing execution-oriented infrastructure which exists
around these programming languages. Re-implementing this infras-
tructure could easily consume a large portion of the limited resources
developers of verification tools have. For example, DIVINE and many
other tools for analysis of C and C++ use the clang compiler to trans-
late C and C++ into LLVM intermediate representation. A similar
approach can be applied to any language that uses LLVM in its transla-
tion (e.g., Rust, Swift, Objective-C), to Java (by translating it to Java
Virtual Machine bytecode), or to C# (by translating it to Common
Language Infrastructure). For libraries, existing open-source versions
can also be used for verification to some extend.

The rest of this chapter is structured as follows: Section 4.1 takes a
deeper look at the advantages and disadvantages of reuse of execution-
oriented components for program verification. Section 4.2 then describes
how DIVINE uses existing components in the analysis of C and C++
and why the C standard library cannot be fully reused from execution-
oriented implementations. Section 4.3 then takes a more detailed look
at the particular case of exception support in DIVINE 4; this part was
published originally in [ŠRB17].

4.1 Component Reuse in Program Analysis

Reuse of execution-oriented components (such as compilers and libraries)
for program analysis is a compromise, and it is important to know the
advantages and disadvantages of component reuse. On the one hand,
reuse can save development time and offload the significant cost of
development and testing to third parties and therefore enable support
for the whole complexity of the given programming language, or at
least its large parts. This is important as the whole reason for analysis
of realistic programming languages is to enable the programmer to use
the tool for analysis of the code they usually write, not a code written
in a small subset of their language of choice. Furthermore, reuse can
also increase the precision of program analysis for the cases where the
same components are used for analysis and execution. For example, if
the same optimising compiler is used in both situations, the analysis
tool can find problems introduced by the compiler’s optimiser (which
is quite complex and error-prone) that were not in the original code.
On the other hand, potential problems with the reused components
can also impact verification precision negatively, especially if they can
hide problems is the analysed code. Even if there were no bugs in the
reused components and they adhered to the specification, the problem
is that these components can under-approximate all behaviours allowed
by the standard. The standard can define multiple allowed ways in
which a particular feature can behave, and the implementors of the
library or compiler are free to choose from these options. For example,
in C++, the order of evaluation of arguments of a function is not
specified by the standard (and the program should not assume any
particular order). The execution-oriented components are also usually
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performance-oriented, which might make the task of program analysis
harder.

4.1.1 Parsing and Compilation

Compilers are now routinely reused in verifiers, and the LLVM toolchain
and clang compiler are especially popular in the area of C (and C++)
analysis. Many program analysis tools are in fact analysing LLVM
IR and not C/C++ directly (for example DIVINE [Bar+17], Skink
[Cas+17], VVT [GLW16], Symbiotic [CSV18], and many more). Build-
ing program analysis for LLVM IR is simpler since LLVM IR abstracts
from many of the high-level concepts and presents only a reasonable
amount of instructions which has to be implemented. The clang com-
piler (which can compile C and C++ to LLVM IR) can handle many
features of these programming languages in such a way that the pro-
gram analysis tools do not need to know about them. For example,
template instantiation, function overloading, dynamic dispatch, and
local variable lifetime (in the absence of exceptions) are handled in
this way. The compiler also handles the problem of parsing the rich
grammar of languages such as C++ and translates various control-flow
constructs to simple jumps.

One of the disadvantages of this approach is that the analysis tool
loses some information present in the original code. For example, a
loop condition is often more clearly represented in the original code
than in the LLVM IR, where it has to be extracted from the value
used in the conditional branch. Another disadvantage is the loss of
possible behaviours – for example, the C++ standards leaves the order
of evaluation of function argument unspecified, letting the compiler to
optimise the code by evaluating them in any order necessary. However,
on the level of LLVM IR, the evaluation order is already fixed.

Some of these disadvantages can be mitigated by reusing less of the
compilation infrastructure, for example by using an approach similar to
the one taken by ESBMC [Gad+18], which uses only the C and C++
parser from clang and builds their intermediate representation from the
abstract syntax tree. Nevertheless, there is a cost to pay for increased
precision. For example, ESBMC has to be able to handle many of the
language features which are abstracted away in the compilation.

It is also possible to go in the other direction and compile the
program to an assembly language for some platform before the analysis,
or even to an executable binary. The disadvantage of this approach is
that assembly languages often contain many details of the platform that
are irrelevant for the analysis. For example, the number of registers
is limited, and on some platforms, it might be hard to distinguish
between function calls and jumps. In an executable, there are further
complications related to address relocations and dynamic linking. Some
of the advantages of this approach are that it might be easier to support
multiple programming languages and that it might be possible to run
the analysis on the exact same binary that is executed in production.
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4 An example is a data
race in initialization of
C++ threads in libc++
discovered by DIVINE.
The libc++ develop-

ers later fixed this bug.

4.1.2 Libraries

Programmers expect not only the language features but also the stan-
dard libraries to work in the program analyser. These standard libraries
provide fundamental features such as the data structures, algorithms,
access to the file system, threading support, and memory allocation.

Clearly, any program analysis tool for C which has support for
dynamic memory will need to support at least the parts of the standard
library that allow its management (malloc, free, . . . ) and any tool
that supports threading will need the support for thread spawning.
These parts of the library will most likely be specific to the analysis
tool, which in this context plays the same role as the operating system
in the program execution. Nevertheless, large parts of the C standard
library and almost all of the C++ standard library is independent of the
operating system it executes on and by extension is also independent
on whether it is used in the context of execution or program analysis.

The advantages and disadvantages of library reuse are in part similar
to the once mentioned for compilers. The library is already tested and
developed by an external entity, but it can contain bugs, or it may
use design choices which are a correct implementation of the standard
but limit possible behaviours of the program to a subset of behaviours
allowed by the standard. However, there are some compromises specifics
to library reuse. Many of the bugs potentially present in a library can
be caught if the library is treated by the analysis tool as a part of
the analysed program. In this way, reuse of libraries can lead to the
discovery of bugs in the library and therefore help to ensure correctness
of the code which uses the library.4 The same feature also makes library
reuse preferable to implementation of given features in the verifier itself
– a bug in the verifier can go unnoticed, while a bug in the library has
much higher chance to be caught by the verifier. Library reuse also
keeps the verifier itself as small as possible, making it easier to ensure
its correctness. Sadly, the same aspect of library reuse increases the
complexity of the verification task, as the analysis tool now has to
analyse the code of the library itself. Furthermore, production-ready
libraries are usually performance-tuned, and therefore their code is
more complex to analyse than a simple library implementation.

An important point in library reuse is that libraries often take full
advantage of the available language features. Therefore, good support
for the language is usually a prerequisite for library reuse.

It is also essential to consider what degree of library reuse makes
sense. For example, a C standard library uses low-level operating
system API (such as sbrk and mmap on POSIX) to implement memory
allocation. It would be possible to reuse the implementation of allocation
from a C standard library, provided the verifier supported this API.
However, it is probably not a good idea. The OS-level API provides
large blocks of memory that are subdivided by the allocation functions
in the library. This subdivision (and block reuse) makes it impossible
to discern boundaries of different allocations and to detect if memory is
allocated or freed without detailed knowledge of the allocation algorithm.
If memory is instead provided in a separate unit for each allocation, it



4.2 COMPONENT REUSE IN DIVINE | 55

C++ code property and options

compiler linker

libraries & runtime

instrumentation verification core
(DiVM)

ValidCounterexample

DIVINE

LLVM IR LLVM IR DiVM IR

Figure 4.1: Workflow of processing of a C++ program by DIVINE.
Boxes with rounded corners represent stages of input processing.
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is relatively easy to detect out-of-bounds accesses and access to freed
memory.

Overall, we believe that reuse of (parts of) existing library im-
plementations is crucial for good language support. To the best of
our knowledge, there are no program analysis tools which reimple-
ment libraries which have complete or nearly complete support of the
respective programming languages. Examples of these tools are ES-
BMC++ [Ram+13] for C++, SMACK for C, C++, Rust and many
other [GBHR20], and Java Pathfinder [AV19] for Java, all of which men-
tion that they support only parts of the respective standard libraries.

4.2 Component Reuse in DIVINE

In DIVINE, we use the clang compiler to produce LLVM IR. The IR is
then linked with implementations of libraries and instrumented for the
verification. The LLVM IR with verification-specific instrumentation
will be called DiVM IR, matching the naming introduced by [Bar+17].
DiVM is the core of DIVINE which handles the execution of LLVM
in a memory-safe way and can save and restore state of the execution.
An overview of the processing of C++ code in DIVINE can be seen in
Figure 4.1.

To make the compilation as easy as possible, the clang compiler is
integrated into DIVINE as a library, and the libraries which are linked
with the program are built at the time of build of DIVINE. The original
integration of clang into DIVINE 4 and the adaptation of LLVM linker
for use with DIVINE was done by me. The work was then taken over
by other members of the team. The current state of the compilation
for DIVINE is described in [BR20].

To provide support for most of C and C++, DIVINE has to pro-
vide standard libraries for these languages. DIVINE has support for
the C and C++ standard libraries, and for the POSIX thread library
(pthreads), which is used on POSIX systems for implementation of
threading in C/C++ code before the 2011 standards and implementa-
tion of the standard threading in the later versions of C/C++. DIVINE
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also has support for many POSIX standard functions, including large
parts of the file system API [Roč+19].

The threading library is written specifically for verification with
DIVINE. Indeed, the whole idea of verification of parallel programs
requires that at some level of the abstraction, a verification-specific
semantics of threads is given. In the case of DIVINE, DiVM provides
explicit nondeterministic choice primitives which are used by the core
of DIVINE’s runtime (DiOS) to implement thread spawning, which
is in turn used by the implementation of POSIX thread library to
start threads. Mutexes, condition variables, and other synchronisation
primitives, which in execution environment usually use an operating
system for the waiting and signalling, are implemented using atomic
sections.

Similarly to threading support, parts of the C standard library have
to be implemented specifically for the verifier. In our case, these parts
are mostly memory allocation and deallocation, which takes memory
directly from DiVM, program startup and exit which is DiOS specific,
and handling of the errno variable which is also DiOS specific. The
rest of the standard C library originates mostly from PDClib, with
some parts from various other open-source C library implementations
and contributions from DIVINE developers.

The C++ standard library usually builds on top of a C standard
library. This allowed us to reuse existing implementation of the C++
standard library, namely libc++abi (which takes care of low-level fea-
tures such as memory allocation and runtime type support, which can
be viewed as part of the language itself but need a library implemen-
tation in practice) and libc++ (which represents all the user-facing
features of the C++ standard library). Both of these libraries are part
of the LLVM project and used for example on macOS and certain BSD
flavours as the default C++ library implementations. Reuse of these
libraries takes care of most of the C++ features which require library
support, with the sole exception of exceptions, which require a special
library for stack manipulation – an unwinder.

The unwinder library used in DIVINE is DiVM specific and is de-
scribed, together with more details about exception support in DIVINE
in the next section. Nevertheless, by adhering to the interface of the un-
winder library used typically on POSIX systems, we were able to make
use of all the exception handling code in libc++abi without any changes
to it. The changes in the source code of libc++ and libc++abi are
limited to changes to platform configuration macros, and in libc++abi
there is a change in the allocation of thread-local backup storage for
exception handling.

The POSIX APIs, mainly concerning file system, are provided by
DiOS and were implemented for use with DIVINE or other program
analysis tools [Roč+19]. This functionality makes it possible to analyze
programs which use file system and other supported parts of POSIX,
either with a simulated environment or with recording and replay of
interaction with the real environment.

The library support and the situation concerning library reuse in
DIVINE are summarized by Table 4.1.

http://dx.doi.org/10.1007/978-3-030-30446-1_18
http://dx.doi.org/10.1007/978-3-030-30446-1_18
http://dx.doi.org/10.1007/978-3-030-30446-1_18


4.3 C++ EXCEPTIONS IN DIVINE | 57

Library Reused? Comment

C standard mostly
(PDClib,
other)

Platform dependent code such as al-
location, program startup and exit,
errno cannot be reused without repli-
cating too many details of the operat-
ing system.

C++
standard

yes (libc++) Only changes to platform selection
macros needed.

C++
runtime

yes
(libc++abi)

Platform selection + tweak of backup
allocator for exceptions (to prevent
performance penalty).

POSIX
threads

no Needs to be verification specific to al-
low exploration of all behaviours of a
parallel program.

POSIX
filesystem

no Normally requires operating system
support and cannot revert into previ-
ous state. Verified program should not
access outside environment directly.

stack
unwinder

no Platform specific (depends on stack
layout and metadata format), can-
not be reused without replicating too
many details of the hardware plat-
form.

Table 4.1: Summary of reuse and reimplementation of libraries in
DIVINE.

5 Boost is one of the most
used collections of general-
purpose C++ libraries.
Many features of boost
eventually get into the C++
standard.

6 There are cases where
not using exceptions makes
sense: if the end-user code
makes no use of them but
the standard library is
compiled with exception
support, the requisite meta-
data tables only serve to
increase the size of the com-
piled program.

The libraries used for verification are shipped with DIVINE source
code and compiled into LLVM IR at the time of compilation of DIVINE.
These LLVM IR libraries are then linked to the program at the time of
its compilation for DIVINE. The verification workflow and the execution
workflow are rather similar in the case of DIVINE (especially on POSIX
systems). In both cases, the program is compiled and then linked with
implementation of C and C++ standard libraries, POSIX thread library,
and a stack unwinder.

4.3 C++ Exceptions in DIVINE

Exceptions in C++ are among the features that are both widely used
(also by the standard library) and tricky to implement. Their use
is, however, also common outside of the standard library: libraries
like boost5 and application-level code often takes advantage of this
capability. This is natural, since exceptions simplify error handling
and usually require less boilerplate code than any of the alternatives.
Furthermore, even though many C++ standard library implementations
can be built without exception support6, this change can significantly
affect its behaviour (and as such, validity of the verification result).
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Finally, error handling paths, including exception propagation, are an
important target for analysis by verification tools, as they are both hard
to test by more conventional means and likely to contain errors – this
naturally arises from the fact that their purpose is to handle unlikely
side cases which can be hard to accurately reproduce with testing. A
model checker, on the other hand, can take advantage of its built-in
support for nondeterminism to rigorously explore error paths.7

4.3.1 Contribution

The approach to exception support described in this section, and origi-
nally published in [ŠRB17] brings the following contributions: first, we
identify the components that are best reused and those which are best
reimplemented and show that this decision crucially depends on the
underlying intermediate language. Second, we provide implementations
of the components which cannot be reused in a form that is easy to
integrate into both existing and future verification tools. One of the
components works as an LLVM transformation pass, and could be used
with any LLVM-based tool. The other component targets the DiVM
language [RŠČB18] specifically, and will therefore only work with tools
which understand this language.8

The goal of this work, especially in the context of our previous
work on the topic of C++ exceptions in verification [RBB16], is to
aid authors of verification tools to minimise costs and effort associated
with inclusion of exception support. Depending on the characteristics
of the tool, either the approach described in [RBB16] or the one in this
work might be more suitable. Overall, in a verifier which can handle
the DiVM language or equivalent, the approach given in this chapter is
simpler to implement and more robust. A more detailed comparison of
the two approaches is given in Section 4.9.2.

All source code related to this work, along with supplementary
material, is available online under a permissive open-source licence.9

The implementation is also a fully integrated part of the DIVINE model
checker and therefore present in its current versions.

4.3.2 Components for Exception Support

Unlike other features of C++, exceptions are neither handled by the
standard or runtime libraries alone, nor delegated to the C standard
library (as C has no support for exceptions). Instead, libc++abi
provides exception support with the help of a platform-specific unwinder
library which is responsible for stack introspection and unwinding
(removal of stack frames and transfer of control to exception-handling
code).

For this reason, DIVINE has to either provide an unwinder imple-
mentation compatible with libc++abi, or modify libc++abi to use
custom code for exception handling. In DIVINE 3, the latter approach
was used, as it was deemed easier at the time [RBB16]. However, while
basic exception support was easier to achieve this way, the approach
also had its disadvantages. First, the LLVM interpreter in DIVINE
3 had special support for exception-related functionality. Second, the

http://dx.doi.org/10.1109/QRS.2017.15
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http://dx.doi.org/10.1016/j.jss.2018.04.026
http://dx.doi.org/10.1016/j.scico.2016.05.007
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10 That is, some of the
less frequently used fea-
tures of C++ exceptions
were handled either incor-
rectly or not at all. That
is to say, the size of the
libc++abi portion that
would have needed to be
reimplemented was initially
underestimated.

11 Clearly, the libunwind
implementation is different
in those two environments,
and therefore correctness
of the platform-specific
implementation of libun-
wind must be established
separately.

12 The execution stack of
a (C++) program con-
sists of stack frames, each
holding context of a single
entry into some function. It
contains local variables, a
return address and register
values which need to be
restored upon return.

13 Application Binary In-
terface, a low-level interface
between program compo-
nents on a given platform.

14 There are many imple-
mentations of the C++ run-
time library, which, besides
exception support code,
provides additional features
such as RTTI. Each imple-
mentation is usually tied
to a particular implemen-
tation of the C++ stan-
dard library. Commonly
used implementations on
Unix-like systems are lib-
supc++, which comes with
libstdc++ and the GCC
compiler, and libc++abi,
which is tied to libc++
used by some builds of
clang and by DIVINE.

libc++abi code for exception handling was replaced, which had two
important consequences: first, the replacement code was not compre-
hensive enough10 and second, this meant that the replaced part of
libc++abi was not taken into account during verification.

In this work, we instead take the first approach: reuse libc++abi
in its entirety and provide the interfaces it requires. Therefore, we
have implemented the libunwind interface used by libc++abi for stack
unwinding and an LLVM instrumentation which builds metadata tables
that libc++abi needs to decide which exceptions should be caught,
how they should be handled and which functions on the stack need to
perform cleanup actions. To put this into perspective, the code which
drives exception handling in libc++abi is about 1300 lines of code,
while the code related to libunwind implementation in DIVINE is about
210 lines and the instrumentation for C++ specific metadata is about
300 lines of code.

Using the original libc++abi code means that all features of the
C++ exception system are fully supported and verification results also
cover the low-level exception support code. That is, this portion of the
code is identical in both the bitcode which is verified and in the natively
executing program.11 Furthermore, should the need arise to use different
C++ runtime library then libc++abi (for example to provide additional
guarantees for programs which use this different library), our solution
should work without any modification of the given C++ runtime library,
provided it uses the (semi-standard) unwinder interface. Finally, the
proposed design is easier to extend to other programming languages as
the libunwind implementation is generic and language independent and
only the instrumentation which provides language-specific metadata
needs to be provided to different languages.

4.4 Exceptions in C++

The process of exception handling in C++ is illustrated by Figure 4.2.
Throwing an exception requires removal of all the stack frames12

between the throwing and catching function from the stack (unwinding).
Therefore, exception handling is closely tied to the particular platform
and is described by ABI13 for the platform. Commonly, exception
handling is split into two parts, one which is tied to the platform (the
unwinder library which handles stack unwinding) and one which is
tied to the language and provided by the language’s runtime library.14

These two parts cooperate in order to provide exception handling for a
given language; however, this communication is not standardised in any
cross-platform fashion. For this reason, we will now focus on zero-cost
exceptions based on the Itanium ABI, an approach which is used across
various Unix-like systems on x86 and x86-64 processor architectures
and is the preferred basis for LLVM exceptions. Nevertheless, it is
possible to generalize our results to other implementations.

4.4.1 Zero-Cost Exceptions

The so-called zero-cost exceptions are designed to incur no overhead
during normal execution, at the expense of relatively costly mechanism
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int max(std::vector<int> &vec) {
if (vec.empty())

throw std::invalid_argument("empty vector");
/* ... */

}
void foo() {

std::vector<int> a = { 1, 2, 3 };
std::vector<int> b = {};
auto x = max(b);
/* ... */

}
int main() {

try {
foo();

} catch (std::range_error &) {
std::cout << "range error\n";

} catch (std::exception &) {
std::cout << "other exception\n";

}
}

Figure 4.2: Exception handling in C++. At the moment an execution
is thrown in max, there are three frames on the stack max, foo, and
main. The exception can be caught by main, but first the cleanup
code in foo has to be executed – this code will deallocate memory
owned by the vectors present in this function. Therefore, first only
the stack frame of max is removed and the cleanup in foo is executed.
After the cleanup, the stack frame of foo will be removed from stack.
Finally in main, the unwinder will transfer control to the second catch
statement (std::exception is predecessor of std::invalid_argument,
but std::range_error is not its predecessor).

for throwing exceptions. This in particular means that no checkpointing
is possible. Instead, when an exception is thrown, the exception support
library, with the help of unwind tables, finds an appropriate handler for
the exception and uses the unwinder to manipulate the stack so that
this handler can be executed. The search for the handler is driven by a
personality function, which is provided by the implementation of the
particular programming language and associated in the metadata with
each function which can participate in exception handling.

The personality function is responsible for deciding which handler
should execute (the handler selection can be complex and language-
specific). In general, there are two types of handlers, cleanup handlers,
which are used to clean up lexically scoped variables (and call their
destructors, as appropriate) and catch handlers, which contain dedicated
exception-handling code. The latter typically arise from catch blocks.
Another major difference between those two types of handlers is that
catch handlers stop the propagation of the exception, while cleanup
handlers let propagation continue after the cleanup is performed. While
cleanup handlers are usually run unconditionally, the catch handler
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15 In fact, the personality
function can also decide to
skip cleanup handlers, but
this is not common.

16 Different personality
functions can be called
for different frames, for
example if the program
consists of code written in
different languages with
exception support.

17 DWARF is a standard
for debugging information
designed for use with ELF
executables. It is used on
most modern Unix-like
systems.

to be executed, if any, is determined by the personality function.15

In C++, the personality function selects the closest catch statement
which matches the thrown type (the match is determined dynamically,
using RTTI). The personality function consults the unwind tables, in
particular their language-specific data area (LSDA), to find information
about the relevant catch handlers.

When an exception is thrown, the runtime library of the language
creates an exception object and passes it to the unwinder library. The
actual stack unwinding is, on platforms which build on the Itanium
ABI, performed in two phases (two-phase handler lookup). First, the
stack is inspected (without modification) in search for a catch handler.
Each stack frame is examined by the relevant personality function.16

If an appropriate catch handler is found in this phase, unwinding
continues with a second phase; otherwise, an unwinder error is reported
back to the throwing function. Unwinder errors usually cause program
termination. In the second phase, the stack is examined again, and
a personality function is invoked again for each frame. In this phase,
cleanup handlers come into play. If any handler is found (cleanup or
catch), this fact is indicated to the unwinder, which performs the actual
unwinding to the flagged frame. Once the control is transferred to
the handler, it can either perform cleanup and resume propagation of
the exception, or, if it is a catch handler, end the propagation of the
exception. If exception propagation is resumed, the unwinder continues
performing phase 2 from the point of the last executed handler. This is
facilitated by storing the state of the unwinder within the exception
object.

4.4.2 Unwind Tables

As mentioned in Section 4.4.1, both the unwinder library and the
language runtime depend on unwind tables for their work. The unwinder
uses these tables to get information about stack layout in order to be
able to unwind frames from it, and for detection which personality
function corresponds to a frame. The personality function then uses
the language-specific data area (LSDA) of these tables in its decision
process.

While the unwinder part of the tables is unwinder- and platform-
specific (it depends on stack layout), the LSDA is platform- and
language-specific. For these reasons, unwind tables are not present in
the LLVM IR; instead, they are generated by the appropriate code gen-
erator for any given platform, based on information in the landingpad
instructions, and the personality attribute of functions. On Unix-like
systems, the unwind tables are in the DWARF17 format.

4.5 Execution of LLVM programs

In this section, we will look at how LLVM bitcode is executed by a model
checker and how this execution is affected by addition of exception
support. Unlike previous approaches, the technique described in this
chapter does not require any exception-specific intrinsic functions or
hypercalls to be supported by the verifier. The exception-specific LLVM
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[RŠČB18] Ročkai et
al., “DiVM: Model

checking with LLVM
and graph memory”.

18 Intrinsic functions are
provided by LLVM as a
light-weight alternative

to new instructions. Such
functions are recognized
and translated by LLVM
itself, as opposed to “nor-
mal” functions that come
from libraries or the pro-
gram. Likewise, DiVM

provides hypercalls, which
are functions that are, in
addition to LLVM intrin-
sics, recognized by DiVM.

instructions can be implemented in the simplest possible way: invoke
becomes equivalent to a call instruction followed by an unconditional
branch. The landingpad instruction can be simply ignored by the
verifier and resume instructions and calls of the llvm.eh.typeid.for
intrinsic are both removed by the LLVM transformation and instrumen-
tation described in Section 4.6. Moreover, the metadata required by
libc++abi is likewise generated by the LLVM transformation and this
process is completely transparent to the verifier.

In addition to support for LLVM, the unwinder (described in more
detail in Section 4.7) requires the ability to traverse and manipulate
the stack and read and write LLVM registers associated with a given
stack frame. Finally, it needs access to a representation of the bitcode
for a given function. All those abilities are part of the DiVM specifi-
cation [RŠČB18] and are generally useful, regardless of their role in
exception support.

The DiVM implementation in DIVINE 4 handles execution of LLVM
instructions, LLVM intrinsic functions and DiVM-specific hypercalls.18

Hypercalls exist to allocate memory, perform nondeterministic choice
or to set DiVM’s control registers (which contain, among other, the
pointer to the currently executing stack frame). Additionally, DiVM
performs safety checks, such as memory bound checking, and detects
use of uninitialised values. However, DiVM hypercalls are intentionally
low-level and simple and do not provide any high-level functionality,
such as threading or standard C library functionality. Instead, those
are provided by the DIVINE Operating System (DiOS) and the regular
C and C++ standard libraries.

The most important purpose of DiOS is to provide threading sup-
port. To this end, DiOS provides a scheduler, which is responsible for
keeping track of threads and their stacks and for (nondeterministically)
deciding which thread should execute next. This scheduler is invoked
repeatedly by the verifier to construct the state space. The scheduler
fully determines the behaviour (or even presence) of concurrency in
the verified program: while DiOS provides asynchronous, preemptive
parallelism typical of modern operating systems by default, it has
also support for a synchronous scheduler and it would be possible to
implement a cooperative scheduler too.

4.5.1 Stack Layout and Control Registers

A DiVM program can have multiple stacks, but only one of them can be
active at any given time (a pointer to the active stack is kept in a DiVM
control register). The active stack is normally either the kernel stack or
the stack that belongs to the active thread which was selected by the
scheduler. Switching of stacks (and program counters) is performed by
the control hypercall which manipulates DiVM control registers.

Traditionally, stack is represented as a contiguous block of memory
which contains an activation frame for each function call. In DiVM, the
stack is not contiguous; instead, it is a singly-linked list of activation
frames, each of which points to its caller. This has multiple advantages:
first, it is easy to create a stack frame for a function, for example
when DiOS needs to create a new thread; additionally, the linked-

http://dx.doi.org/10.1016/j.jss.2018.04.026
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[RŠČB18] Ročkai et al.,
“DiVM: Model checking
with LLVM and graph
memory”.

list-organized stack is a natural match for the graph representation
of memory which DiVM mandates, and therefore can be saved more
efficiently [RŠČB18]. Additionally, this way the stack may be nonlinear,
and the unwinder can use this feature to safely transfer control to a
cleanup block while the unwinder frame is still on the stack. Later, the
handler can return control to the unwinder frame and the unwinder
can continue its execution. This would be impossible with a contiguous
stack since cleanup code is allowed to call arbitrary functions and frames
of those functions would overwrite the frame of the unwinder. For this
reason, on traditional platforms, the unwinder needs to store its entire
state in the exception object, while in DiVM, it can simply retain its
own activation frame, which simplifies the unwinder. An illustration of
how the stack looks while the unwinder is active is shown in Figure 4.3.

4.6 The LLVM Transformation

The C++ runtime library (libc++abi in our case), needs access to the
LSDA section of unwind tables (a pointer to this metadata section
is accessible through the unwinder interface). This section contains
DWARF-encoded exception tables, which are normally generated to-
gether with the executable by the compiler backend (code generator).
Unfortunately, the generator of DWARF exception tables in LLVM
is closely tied to the machine code generator and cannot be used to
generate DWARF-formatted exception tables for the LLVM IR used
for verification purposes. For this reason, we have implemented a small
LLVM transformation which processes the information in landingpad
instructions and generates LLVM constants which contain the DWARF-
formatted LSDA data. A reference to one such constant is attached to
each function in the bitcode file.

The choice of catch block in C++ depends on the actual type the
exception has at runtime. This type can be inspected thanks to runtime
type information (RTTI). The RTTI can also be used to determine if
one class inherits from other class, which is needed to decide which
catch block can be used (as catch blocks can catch exceptions of derived
types). The RTTI is avaible through RTTI type info pointers, special
C++ objects which are used to identify types at runtime and are
emitted by the C++ frontend as constants. Type info pointers can
be obtained from an object using the typeof operator in C++ and in
LLVM they are saved in the virtual member functions’ table (vtable;
for objects which have virtual member functions, other objects do not
have RTTI type info pointers saved in them and the corresponding type
info is fully determied by their static type).

To improve efficiency, LLVM and zero-cost exceptions do not di-
rectly use RTTI type info pointers within the landing blocks to decide
which exception handlers should run. Due to the complexities of C++
type system, matching RTTI types against each other is expensive: a
search in a pair of directed acyclic graphs is required. Moreover, since
the RTTI matching must be already done in the personality function to
decide which frames to unwind, the personality can also pre-compute a
numerical index for the landing pad. This index, also called a selector

http://dx.doi.org/10.1016/j.jss.2018.04.026
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VM Registers
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PC = . . .
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main()

caller

PC = call @~File
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exception
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caller = NULL
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_Unwind_RaiseException()

caller
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__cxa_throw()
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. . .

private_1
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C++ Exception Object

Figure 4.3: In this figure, we can see a stack of a program which is running cleanup block in the
main function. The cleanup block calls the destructor of File structure, which in turn calls the
close function (which is the current active function). Furthermore, the cleanup handler can access
the exception object which contains a pointer to the stack of the unwinder (and the program counter
of the catch block). The frame pointer in the exception is used by the implementation of the resume
instruction to jump back to the unwinder and continue phase 2 of the unwinding.
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Table 4.2: A list of C functions provided by libunwind. In C, all the
functions are prefixed with _Unwind_ to prevent name conflicts with user
code and other libraries (i.e. the C name of SetGR is _Unwind_SetGR).

Function Description

SetGR Store a value into a general-purpose register
GetGR Read a value from a general-purpose register
SetIP Stora a value into the program counter
GetIP Read the value of the program counter
RaiseException Unwind the stack
Resume Continue unwinding the stack after a cleanup
DeleteException Delete an exception object (free its resources)
GetLSDA Obtain a pointer to the LSDA
GetRegionStart Obtain a base for relative code pointers

19 https://
mentorembedded.github.
io/cxx-abi/abi.html

value is then used as a shortcut to run an appropriate catch clause
within the landing block, instead of re-doing the expensive RTTI match-
ing. Since the catch handler is typically expressed in terms of type info
pointers, it needs to efficiently obtain the selector value from a type
info pointer. For this purpose, LLVM provides a llvm.eh.typeid.for
intrinsic, which obtains (preferably at compile time) the selector value
corresponding to a particular type info pointer.

Therefore, besides generating the LSDA data, the transformation
statically computes the values of calls to llvm.eh.typeid.for and sub-
stitutes them into the bitcode. The purpose of llvm.eh.typeid.for is
to translate from RTTI pointers to selector values, therefore it is only
required that the integer selector value chosen for a particular RTTI
object is in agreement with the personality function. In our implemen-
tation, this is ensured by computing the selector values statically for
both the LSDA (which is where personality function obtains them) and
for llvm.eh.typeid.for at the same time.

Finally, the transformation rewrites all uses of the resume instruction
to ordinary calls to Resume, a function which is part of libunwind (see
also Table 4.2).

4.7 The Unwinder

The unwinder in DIVINE is designed around the interface described
in the Itanium C++ ABI documentation,19 adopted by multiple ven-
dors and across multiple architectures. The implementation is part
of the runtime libraries shipped with DIVINE, in particular in file
dios/arch/divm/unwind.cpp. The unwinder builds upon a lower-level
stack access API which is provided by DiOS under dios/include/sys/
stack.h and implemented in dios/arch/divm/stack.cpp.

Due to the stack layout used in DiVM (a linked list of frames, see
also Section 4.5.1), our unwinder is much simpler than usual. The
main task of unwinding is handled by the RaiseException function,
which is called by the language runtime when an exception is thrown.
This function performs the two-phase handler lookup described in

https://mentorembedded.github.io/cxx-abi/abi.html
https://mentorembedded.github.io/cxx-abi/abi.html
https://mentorembedded.github.io/cxx-abi/abi.html
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20 Section 14.4, para-
graph 9 of the C++20

standard [ISO20]

21 When a function re-
turns normally (due to a
ret instruction), DiVM
takes care of freeing the
frame and its local vari-
ables (alloca memory).

Section 4.4.1 and it adheres to the Itanium ABI specification, with the
following exceptions:

i. it checks that an exception is not propagated out of a function
which has the nounwind attribute set, and reports verification
error if this is the case;

ii. if the exception is a C++ exception and there is no handler for
this exception type, the unwinder chooses nondeterministically
whether it should or should not unwind the stack and invoke
cleanup handlers.

The purpose of the first deviation is to check consistency of exception
annotations (arising, for example, from a nothrow function attribute as
available in GCC and in clang). The second modification allows DIVINE
to check both allowed behaviours of uncaught exceptions in C++: the
C++ standard specifies that it is implementation-defined whether the
stack is unwound (and destructors invoked) when an exception is not
caught.20 Since the program may contain errors which manifest only
under one of these behaviours, it is useful to be able to test both of
them.

4.7.1 Low-Level Unwinding

The primary function of the unwinder described above is to find excep-
tion handlers; for the actual unwinding of frames, it uses a lower-level
interface provided by DiOS. This interface consists of two functions:
__dios_jump, which performs a non-local jump, possibly affecting both
the program counter and the active frame, and __dios_stack_free,
which removes stack frames from a given stack. __dios_stack_free is
designed in such a way that it can unwind any stack, not only the one
it is running on, and is not limited to the topmost frames (effectively,
it removes frames from the stack’s singly-linked list, freeing all the
memory allocated for local variables that belong to the unlinked frames,
along with the frames themselves21). The unwinder identifies values
as local variables by looking at the instructions of the active function
– the results of alloca instructions are exactly the addresses of local
variables.

4.7.2 Unwinder Registers

When an exception is propagating, a personality function has to be able
to communicate with the code which handles the exception. In C++,
the communicated information includes the address of the exception
object and a selector value which is later used by the handler. On
most platforms, these values are passed to the handler using processor
registers, which are manipulated using unwinder’s SetGR function. This
function can either set the register directly (if it is guaranteed not to
be overwritten before the control is transferred to the handler), or save
the value in a platform-specific way and make sure it is restored before
the handler is invoked.
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22 LLVM registers are
function-local values that
cannot be used to pass
information between func-
tions in pure LLVM. With
DiVM, we can use meta-
data to locate the register’s
value in a frame of a func-
tion and modify it.

[RBB13] Ročkai et al., “Im-
proved State Space Re-
ductions for LTL Model
Checking of C & C++ Pro-
grams”.

In LLVM (and hence in DiVM), there is no suitable counterpart to
the general purpose registers of a CPU; instead, the values set by the
personality function should be made available to the program in the
return value of the landingpad instruction. This, however, requires the
knowledge of the expected semantics of these registers. Currently, all
users of the unwinder are expected to use the same registers as the C++
frontend in clang. That is, register 0 corresponds to the exception object
and register 1 corresponds to a type index. This also directly maps to
the return type of landingpad instructions and therefore the register
values can be saved directly into the LLVM register corresponding to
the particular landingpad that is about to be executed.22

Registers other than 0 and 1 are currently not supported. In LLVM,
in line with the above observation about clang and C++, there is a
convention that SetGR indices correspond to indices into the result tuple
of a landingpad instruction. As long as this convention is preserved by
a particular language frontend and its corresponding runtime library
(personality function), it is very easy to extend our unwinder to support
this language. Finally, if a language frontend were instead to emit calls
to GetGR in the handler, registers of this type can be stored in the
unwinder context directly.

4.7.3 Atomicity of the Unwinder

The unwinder performs rather complex operations and therefore throw-
ing an exception can create many states, even when τ reduction [RBB13]
is enabled. However, many of these states are not interesting from the
point of view of verification, as the operations performed by the un-
winder are mostly thread-local and only the exception handlers (and
possibly personality function) can perform globally visible actions. For
this reason, the unwinder uses DiOS atomic sections to hide most of its
complexity.

Since an atomic section is implemented as an interrupt mask (i.e. a
single flag indicating that an atomic section is executing) in DiVM’s
flag register, it is necessary to correctly maintain the state of this
flag. In particular, it is required that the unwinder behaves reasonably
even if it is called when the program is already in an atomic section.
Consequently, care must be taken to restore the state of the atomic mask
when the unwinder transfers control to a personality function or an
exception handler. When the unwinder is first called, it enters an atomic
section and saves the previous value of the interrupt mask. This will be
the value the flag will be restored to when a personality function is first
invoked. The mask is later re-acquired after the personality function
returns and it is restored once more when the first handler is invoked.
When the exception handler resumes (using the resume instruction),
the atomic section is re-entered and its state saved so its state before
the resume can be restored again for the next call to a personality
function. This way, it is possible to safely throw an exception out of
an atomic section, provided that the atomic section is exception-safe
(that is, it has an exception handler which ends the atomic section if
an exception is propagated out of it). This is a reasoneble assumption
because atomic sections are mostly used in the implementation of DiOS
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itself, and they should use C++ guard objects to ensure exception
safety.

4.7.4 longjmp Support

Using the low-level unwinder interface described in Section 4.7.1, it is
easy to implement other mechanisms for non-local transfer of control.
The functions longjmp and setjmp, specified as part of C89, are one
such example.23 The setjmp function can be used to save part of the
state of the program, so that a later call to longjmp can restore the
stack to the state it was in when setjmp was called. This way, longjmp
can be used to remove multiple frames from the stack. When longjmp
is called, the program behaves as if setjmp returned again, only this
time it returns a different value (provided as an argument to longjmp).

The DIVINE implementation of setjmp saves the program counter
and the frame pointer of the caller of setjmp. The longjmp function
then uses this saved state, along with access to metadata about stack
frames, to set the return value of the call instruction corresponding to
the setjmp. Afterwards, it unwinds the stack using the low-level stack
access API and transfers control to the instruction right after the call
to setjmp.

4.8 Related Work

Primarily, we have looked at existing tools which support verification of
C++ programs. Existence of an implementation is, to a certain degree,
an indication that a given approach is viable in practice. We have,
however, also looked at approaches proposed in the literature which
have no implementations (or only a prototype) available.

A number of verification tools are based on LLVM and therefore
have some support for C++. LLBMC [FMS13] and NBIS [GW14] are
LLVM-based bounded model checkers which target mainly C and have
no support for exceptions or the C++ standard library. VVT [GLW16]
is a successor of NBIS which uses either IC3 or bounded model checking
and has limited C++ support, but it does not support exceptions.
Furthermore, KLEE [CDE08] and KLOVER [LGR11] are LLVM-based
tools for test generation and symbolic execution. KLOVER targets
C++ and according to [LGR11] has exception support, but it is not
publicly available. On the other hand, KLEE focuses primarily on
C and its C++ support is rather limited. As of April 2020, there is
ongoing work on exception support in KLEE.

Both CBMC [CKL04; KT14] and ESBMC [Gad+18] bounded model
checkers support C++ (but neither appears to have working support
of the standard library) and they appear to have some support for
exceptions. However, in CBMC, the support for exceptions seems to
be limited to recognition of the try-catch syntax and throwing an
exception triggers an error.24 In our survey of tools for verification of
C++ programs, ESBMC has by far the best exception support: ESBMC
3.0 can deal with most, but not all, types of exception handlers and even
with exception specifications.25 However, ESBMC is currently (in 2020,
as of version 6.3) migrating C++ to the clang frontend and does not
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25 ESBMC 3.0 is unable to
determine that an excep-
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specifies a type which is
a virtual base class in a
diamond-shaped hierarchy
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of the most-derived type
of the diamond. This sug-
gests that ESBMC uses
its own implementation of
RTTI support code, which
is somewhat incomplete,
compared to production
implementations.
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support exceptions. Finally, DIVINE 3 [RBB16] also comes close to full
support for exceptions, but lacks support for exception specifications.
Overall, this survey suggests that all current implementations of C++
exceptions in verification tools are incomplete and confirms that using
an existing, standards-compliant implementation in a verification tool
is indeed quite desirable.

Finally, it is also possible to transform a C++ program with ex-
ceptions into an equivalent program which only uses more traditional
control flow constructs. This approach was taken in [Pra+11], with the
goal of reusing existing analysis tools without exception support. While
this approach is applicable to a wide array of verification tools, it is also
incompatible with reuse of existing exception-related runtime library
code. As such, it offers a very different set of tradeoffs than our current
approach. Moreover, the translation cost is far from negligible, and also
affects code that does not directly deal with exceptions (i.e. it violates
the zero-cost principle of modern exception handling). Unfortunately,
we were unable to evaluate this approach, since there are no publicly
available tools which would implement it.

Exceptions are more widely supported in the context of Java analysis,
probably thanks to their prevalence in Java code. Examples of tools
for analysis of Java with exception support are Java Pathfinder [AV19],
JBMC [CKS19], and JDart [MH20].

4.9 Evaluation

In order to assess the viability of our approach, we have executed a set
of benchmarks in various configurations of DIVINE 4. The benchmarks
were executed on quad-core Xeon 5130 clocked at 2 GHz and with 16GB
of RAM. We have measured the wall time, making all 4 cores available
to the verifier.

4.9.1 Benchmark Models

The set of models we have used for this comparison consists of 831 model
instances, out of which we picked the 794 that do not contain errors.
The reason for this is that the execution time is much more variable
when a given program contains an error, since the model checking
algorithm works on the fly, stopping as soon as the error is discovered
and explores the state space in parallel, which makes the exploration
order vary between verification runs.

Majority of the valid models (777) are C++ programs of vary-
ing complexity, while the 17 models in the svc-pthread category are
concurrent programs written in plain C with pthreads. Since our im-
plementation of the POSIX thread API is done in C++, the impact of
exception support on verification of C programs is also relevant. The
“alg” category includes sequential algorithmic and data structure bench-
marks, the “pv264” category contains unit tests for student assignments
in a C++ course, the “iv112” category contains unit tests for concur-
rent data structures and other parallel programs (again assignment
problems in a course about concurrency in C++), “libcxx” contains a
selection of tests from the libc++ testsuite (with focus on exception
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Table 4.3: Comparison of the new exception code with a DIVINE-3-
style version.

category # mod time
(D4)

time
(D3)

# states
(D4)

# states
(D3)

alg 9 3:52 3:51 543.3 k 543.3 k
pv264 13 1:34 1:32 183.0 k 183.0 k
iv112 11 25:58 25:57 3743 k 3743 k
libcxx 425 42:15 42:09 2182 k 2182 k
bricks 292 3:04:25 2:56:55 6271 k 6251 k
divine 3 6:20 6:18 1040 k 1040 k
cryptopals 3 0:01 0:01 1943 1943
llvm 12 36:36 36:27 3865 k 3865 k
svc-pthread 17 16:47 16:41 1685 k 1685 k
total 794 5:21:44 5:13:49 20.1 M 20.0 M

26 http://cryptopals.com

27 http://llvm.org/svn/
llvm-project/test-suite/

trunk/SingleSource/
Benchmarks/Shootout

[RBB16] Ročkai et al.,
“Model Checking C++ Pro-

grams with Exceptions”.

support coverage), “bricks” contains unit tests for various C++ helper
classes, including concurrent data structures, “divine” contains unit
tests for a concurrent hashset implementation used in DIVINE, “cryp-
topals” contains solutions of the cryptopals problem set26, the “llvm”
category contains programs from the LLVM test-suite27 and finally, the
“svc-pthread” category includes pthread-based C programs from the
SV-COMP benchmark set. In most of the programs, it was assumed
that malloc and new never fail, with the notable exception of part of
the “bricks” category unit tests. The tests where new failures are allowed
are especially suitable for evaluating exception code, in particular if
multiple concurrent threads are running at the time of the possible
failure.

4.9.2 Comparison to Builtin Exception Support

In addition to the approach presented in this chapter, we have imple-
mented the approach described in [RBB16] in the context of DIVINE 4.
This allowed us to directly measure the penalty associated with the
present approach, which is more thorough and less labour-intensive
at the same time. Our expectation was that this would translate to
slower verification, since the off-the-shelf code is more complex than
the corresponding hand-tailored version used in [RBB16]. In line with
this expectation, we set the criterion of viability: we would consider a
slowdown of at most 10% to be an acceptable price for the improved
verification fidelity, and convenience of implementation. Since other
resource consumption (especially memory) of verification is typically
proportional to state space size, we have used the number of states
explored as an additional metric. The expected effect on the shape (and,
by extension, size) of the state space should be smaller than the effect
on computation time (most of the additional complexity is related to
computing a single transition). We believe that an acceptable penalty
in this metric would be about 2% increase.

As can be seen in Table 4.3, the time penalty on our chosen model
set is very acceptable – just shy of 2.6% – and the state space size is

http://cryptopals.com
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Table 4.4: Comparison of the new exception code against stubbed
exceptions. Compared to Table 4.3, in this case 133 models failed due to
the stubs and were excluded. State counts are identical for all models.

category # mod time (D4) time (stub) # states

alg 9 3:52 3:52 543.3 k
pv264 13 1:34 1:34 183.0 k
iv112 11 25:58 26:00 3743 k
libcxx 392 41:56 41:54 2179 k
bricks 192 35:30 35:21 2378 k
divine 3 6:20 6:19 1040 k
cryptopals 3 0:01 0:01 1943
llvm 12 36:36 36:28 3865 k
svc-pthread 17 16:47 16:43 1685 k
total 661 2:52:30 2:52:08 16.2 M

[RBB16] Ročkai et al.,
“Model Checking C++ Pro-
grams with Exceptions”.

28 In this case, the han-
dler is installed using
std::set_terminate,
which is available even
when -fno-exceptions is
given. The situation would
be similar if only parts of
the program were compiled
with -fno-execptions.
In particular, the prob-
lem is that the standard
library, if compiled with
-fno-exceptions, cannot
throw, and must there-
fore behave differently in
those scenarios, affecting
the behaviour of the user
program.

within 1% of the older approach [RBB16]. We believe that this small
penalty is well justified by the superior verification properties of the
new approach.

4.9.3 Comparison to Stub Exceptions

The second alternative approach is to consider any thrown exception
an error, regardless of whether it is caught or not. This can be achieved
much more easily than real support for exceptions, since we can simply
replace the entire libunwind interface with stubs which raise an error
and refuse to continue. This approach only works for models which do
not actually throw any exceptions during their execution. The results
of this comparison are shown in Table 4.4 – the verification time is
nearly identical and the state spaces are entirely so. This is in line
with expectations: in those models, catch blocks are present but never
executed. Since the proposed approach does not incur any overhead
until an exception is actually thrown, we would not expect a substantial
time difference.

4.9.4 Comparison to No Exceptions

Finally, the last alternative is to disable exception support in the C++
frontend entirely. In clang, this is achieved by compiling the source
code with the -fno-exceptions flag. In this case, the LLVM bitcode
contains no exception-related artefacts at all, but many programs fail
to build. Additionally, a number of programs in the “bricks” category
contain exception handlers for memory allocation errors and therefore
exit cleanly upon memory exhaustion. Even though some of those
programs can be compiled with -fno-exceptions, they now contain
an error (a null pointer dereference) which is not present when they are
compiled the standard way.28 Those programs were therefore excluded
from the comparison. The summary of this comparison can be found
in Table 4.5 – the time saved for models where -fno-exceptions is
applicable is again quite small, less than 13%. In this case, the difference

http://dx.doi.org/10.1016/j.scico.2016.05.007
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Table 4.5: Comparison of the new exception support against a case
where -fno-exceptions was used to compile the sources and libraries.
In this case, it was only possible to verify 423 models from the set
(i.e. 371 models are missing from the comparison). State counts are
identical for all models.

category # mod time (D4) time (nxc) # states

alg 1 0:24 0:23 34.2 k
pv264 1 0:00 0:00 57
iv112 10 23:58 22:06 3571 k
libcxx 393 41:57 40:44 2180 k
svc-pthread 17 16:47 15:42 1685 k
total 423 1:23:33 1:19:21 7504 k

[RŠČB18] Ročkai et
al., “DiVM: Model

checking with LLVM
and graph memory”.

is due to the changes in control flow of the resulting LLVM bitcode.
Since call is not a terminator instruction (does not perform a jump;
unlike invoke), the local control flow in a function is negatively affected
by the presence of invoke instructions: more branching is required,
and this slows down the evaluator in DiVM. While it is easy to see if a
given program can be compiled with -fno-exceptions, it is typically
much harder to ensure that its behaviour will be unchanged. For this
reason, we do not consider the time penalty in verification of this type
of programs a problem.

4.9.5 Reusability

As outlined in Section 4.1, the two components directly involved in
exception support are comparatively small and well isolated. The
LLVM transformation is fully reusable with any LLVM-based tool. The
unwinder, on the other hand, relies on the capabilities of DiVM. However,
there is no need for hypercalls specific to exception handling and
therefore, the implementation work is essentially transparent to DiVM.
The capabilities of DiVM required by the unwinder are limited to the
following: linked-list stack representation, runtime access to the program
frame layout and 2 hypercalls: __vm_control and __vm_obj_free.
More details about DiVM can be found in [RŠČB18].

Finally, adding support for a new type of exceptions is also much
simpler in this approach – no modifications to DiVM (or any other host
tool) are required: only the two components described in this chapter
may need to be modified.

4.10 Conclusion

In this work, we have discussed an approach to extending an LLVM-
based model checker with C++ exception support. We have found that
reusing an existing implementation of the runtime support library is
a viable approach to obtain complete, standards-compliant exception
support. A precondition of this approach is that the verification tool is
flexible enough to make stack unwinding possible. The DiVM language,

http://dx.doi.org/10.1016/j.jss.2018.04.026
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on which the DIVINE model checker is based, has proven to be a
good match for this approach, due to its simple and explicit stack
representation, along with a suitable set of control flow primitives.

We also performed a survey of tools based on partial or complete
reimplementations of C++ exception support routines and found that
in each tool, at least one edge case is not well supported. In contrast to
this finding, with our approach, all those edge cases are covered “for free”,
that is, by the virtue of reusing an existing, complete implementation.
Contrary to the prediction made in [RBB16], we have found that with a
suitable target language, implementing a new unwinder can be relatively
simple. The unwinder implementation described in this chapter is only
about 210 lines of C++ code, while it would be impossible to implement
without verifier modifications in DIVINE 3. Therefore, we can conclude
that with the advent of the DiVM specification [RŠČB18] and its
implementation in DIVINE 4, reimplementing the libunwind API
and reusing libc++abi became a viable strategy to provide exception
support.
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Chapter 5

Analysis of Programs Under
the x86-TSO Relaxed
Memory Model

Text of this chapter is based on [ŠB18]. The benchmarks are unmodified
from the original paper.

This chapter presents an extension of the DIVINE model checker that
allows for analysis of C and C++ programs under the x86-TSO relaxed
memory model. We use an approach in which the program to be verified
is first transformed so that it encodes the relaxed memory behaviour,
and after that, it is verified by an explicit-state model checker supporting
only the standard sequentially consistent memory. The novelty of our
approach is in careful design of encoding of x86-TSO operations so
that the nondeterminism introduced by the relaxed memory simulation
is minimised. In particular, we allow for nondeterminism only in
connection with memory fences and load operations of those memory
addresses that were written to by a preceding store. We evaluate and
compare our approach with the state-of-the-art bounded model checker
CBMC [CKL04; KT14] and stateless model checker Nidhugg [Abd+15].
For the comparison, we employ SV-COMP concurrency benchmarks
that do not exhibit data nondeterminism, and we show that our solution
built on top of the explicit-state model checker outperforms both of the
other tools. The implementation is publicly available as an open source
software.

5.1 Motivation and Introduction

Almost all contemporary processors exhibit relaxed memory behaviour,
which is caused by cache hierarchies, instruction reordering, and specula-
tive execution. This, together with the rise of parallel programs, means
that programmers often have to deal with the added complexity of
programming under relaxed memory. The behaviour of relaxed memory
can be highly unintuitive even on x86 processors, which have stronger
memory model than most other architectures. Therefore, programmers
often have to decide whether to stay relatively safe with higher-level
synchronisation constructs such as mutexes, or whether to tap to the
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full power of the architecture and risk subtle unintuitive behaviour of
relaxed memory accesses. For these reasons, it is highly desirable to
have robust tools for finding bugs in programs running under relaxed
memory.

Our aim is primarily to help with the development of lock-free data
structures and algorithms. Instead of using higher-level synchronisation
techniques such as mutexes, lock-free programs use low-level atomic
operations provided by the hardware or programming language to ensure
correct results. This way, lock-free programs can exploit the full power
of the architecture they target, but they are also harder to design, as
the ordering of operations in the program has to be considered very
carefully. We believe that by providing a usable validation procedure
for lock-free programs, more programmers will find courage to develop
fast and correct programs. Recently, many techniques for analysis
and verification which take relaxed memory into account have been
developed, and research in this field is still pretty active. In this work,
we are adding a new technique which we hope will make the analysis of
C and C++ programs targeting x86 processors easier.

We extend DIVINE with the support for the x86-TSO memory
model [Sew+10] which describes the relaxed behaviour of x86 and x86-
64 processors. Due to the prevalence of the Intel and AMD processors
with the x86-64 architecture, the x86-TSO memory model is a prime
target for program analysis. It is also relatively strong and therefore
underapproximates most of the other memory models – any error which
is observable on x86-TSO is going to manifest itself under the more
relaxed POWER or ARM memory models. More details about x86-TSO
can be found in Section 2.2.3.

To verify a program under x86-TSO, we first transform it by encoding
the semantics of the relaxed memory into the program itself, i.e., the
resulting transformed program itself simulates nondeterministically
relaxed memory operations. To reveal an error related to the relaxed
memory behaviour, it is then enough to verify the transformed program
with a regular model checker supporting only the standard sequentially
consistent memory.

In this chapter, we introduce a new way of encoding the relaxed
memory behaviour into the program. Our new encoding introduces low
amount of nondeterminism, which is the key attribute that allows us
to tackle model checking of nontrivial programs efficiently. In particu-
lar, we achieve this by delaying nondeterministic choices arising from
x86-TSO as long as possible. Our approach is based on the standard
operational semantic of x86-TSO with store buffers, but it removes
entries from the store buffer only when a load or a fence occurs (or if
the store buffer is bounded and full). Furthermore, in loads, we only
remove those entries from store buffers that relate to the address being
loaded, even if there are some older entries in the store buffer.

5.2 Conventional Semantics of x86-TSO

To better illustrate the advantages of our semantics for x86-TSO, we
will now present the more usual semantics of this memory model often
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used in verification. This semantics is based on the x86-TSO semantics
presented in [Sew+10]. It uses a (possibly bounded) thread-local store
buffer which stores memory store entries. The oldest entry in the store
buffer can be flushed at any point, yielding all possible ways stores can
be delayed (up do the reordering bound). Often, the nondeterministic
flushing is achieved by a flusher thread associated with each store
buffer – this allows uniform modelling of thread and memory model
nondeterminism. This approach is used for example by [ZKW15] and
[Abd+17] or in our previous work in [ŠRB16].

The disadvantage of this semantics is that it introduces a lot of
nondeterminism. Once there are any entries in the store buffer, the store
buffers can be (partially) flushed at any point the thread rescheduling
is possible. Therefore, without an additional reduction, there will often
be a lot of runs that differ only in the moment a particular value was
flushed from the store buffer to the main memory, even if this value
is never read (or is read much later). We illustrate this behaviour in
Figure 5.1.

In practice, analysers for parallel programs employ state space
reductions which can remove some of the nondeterminism introduced
by the flusher thread. However, the flusher thread can behave somewhat
differently from normal program threads – it is not necessary to execute
the flusher thread at all if the store buffer it belongs to does not contain
a value which will be read and it suffices to execute it just before
such a read. Taking this into account requires either changes to the
reduction mechanism, or to the semantics of x86-TSO simulation. We
have decided to take the second route and show that it opens room for
further optimisations not possible with the conventional flusher-thread
implementation.

5.3 x86-TSO in DIVINE

DIVINE does not natively support relaxed memory, and we decided
not to complicate the already complex execution engine and memory
representation with a simulation of relaxed behaviour. Instead, we
encode the relaxed behaviour into the program itself on the level of
LLVM intermediate representation. The modified program running
under sequential consistency simulates all x86-TSO runs of the original
program, up to some bound on the number of stores which can be
delayed. The program transformation is rather similar to the one
presented in our previous work in [ŠRB16]. The main novelty is in
the way of simulation of x86-TSO which produces significantly less
nondeterminism and therefore substantial efficiency improvements.

5.3.1 Simulation of the x86-TSO Memory Model

The most straightforward way of simulating x86-TSO is to add store
buffers to the program and flush them nondeterministically, for example
using a dedicated flusher thread which flushes one entry at a time
and interleaves freely with all other threads. We used this technique
in [ŠRB16]. This approach does, however, create many redundant
interleavings as the flusher thread can flush an entry at any point,
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1 void t0() {
2 x = 1;
3 y = 1;
4 }

1 void t1() {
2 z = 1;
3 }

1 void t2() {
2 int a = y;
3 int b = x;
4 assert(!(a == 0 && b == 1));
5 }

x ← 1
y ← 1

z ← 1

x = 0 y = 0 z = 0
PCt0 = 4 PCt1 = 3 PCt2 = 1

y ← 1 z ← 1

x = 1 y = 0 z = 0
PCt0 = 4 PCt1 = 3 PCt2 = 1

x ← 1
y ← 1

x = 0 y = 0 z = 1
PCt0 = 4 PCt1 = 3 PCt2 = 1

x ← 1
y ← 1

z ← 1

x = 0 y = 0 z = 0
PCt0 = 4 PCt1 = 3 PCt2 = 2

. . .
x = z = 1

x = z = 1; PCt2 = 2

x = y = z = 1; PCt2 = 2 x = z = 1; PCt2 = 3

×x = y = z = 1; PCt2 = 3

×

x = 1; PCt2 = 2

x = 1; PCt2 = 3

. . . ×

flush x ← 1 flush z ← 1 int a = y; // →0

flush z ← 1 int a = y; // →0

int a = y; // →0
flush z ← 1

int b = x; // →1

flush y ← 1

int b = x; // →1

assert(...)

int b = x; // →1

flush y ← 1
assert(...)

flush z ← 1 flush y ← 1
assert(...);

flush x ← 1

int a = y; // →0

flush x ← 1

flush z ← 1

Figure 5.1: An example parallel program and a fragment of its state space. We start in a state
where the threads t0 and t1 had already executed but did not flush their buffers yet and t2 did
not start executing. This fragment of the state space shows (some of) the states that reach the
assertion violation, i.e., states where a = 0 ∧ b = 1. The states marked with × are the states which
have reached the assertion violation. States in the first two rows of the state space show store buffers
on the top and state of the memory and program counters on the bottom. In the rest of the state
space, we show only differences in the memory and program counters.
We can see that the state space contains many redundant runs. First, flushes of z ← 1 are irrelevant
as z is never read. The same holds for flushes of y ← 1 after the execution of line 2 in t2. Finally,
flushes of x ← 1 are only relevant just before the execution of line 2 in t2, which is the only one
which reads x.
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1 Compare and swap,
atomic exchange, and com-
pound arithmetic and logic
operations such as fetch
and add

2 With the exception of
atomic compound opera-
tions, all modifications to
the memory in LLVM must
be performed by a series
of instructions containing
a load to a register, mod-
ifications of the register,
and store of register value
to the memory. Therefore
it is sufficient to consider
only this limited number
of instructions as other in-
structions do not access
memory at all.

regardless of whether or not it is going to produce a run with a different
memory access ordering, i.e. without any respect to whether the flushed
value is going to be read or not.

To alleviate this problem, it is possible to delay the choice whether
to flush an entry from a store buffer to the point when the first load
tries to read a buffered address. Only when such a load is detected, all
possible ways the store buffers could have been flushed are simulated. In
this case, the load can trigger flushing from any of the store buffers, to
simulate that they could have been flushed before the load. To further
improve the performance, only entries relevant to the loaded address are
affected by the flushing. These are the entries with matching addresses
and any entries which precede them in the corresponding store buffers
(that are flushed before them to maintain the store order).

A disadvantage of this approach is that there are too many ways in
which a store buffer entry can be flushed, especially if this entry is not
the oldest in its store buffer, or if there are entries concerning the same
addresses in multiple store buffers. All of these cases can cause many
entries to be flushed, often with a multitude of interleavings of entries
from different store buffers which has to be simulated.

Delayed Flushing To alleviate aforementioned explosion of possible
orders in which the store buffers can be flushed, we propose delayed
flushing : entries in the store buffers can be kept in the store buffer after
newer entries were flushed if the retained entries are marked as flushed.
Such the entries behave as if they were already written to the main
memory, but can still be reordered with entries in other store buffers.
That is, when there is a flushed entry for a given location in any store
buffer, the value stored in the memory is irrelevant as any load will
either read the flushed entry or entry from the other store buffer (which
can be written after the flushed entry). Flushed entries make it possible
to remove store buffer entries out of order while preserving total store
order of observable operations. This way, a load only affects entries
from the matching addresses and not their predecessors in the store
order. This improvement is demonstrated in Figure 5.2.

Program Transformation DIVINE handles C and C++ code by
translating it to LLVM and instrumenting it (see Figure ?? for DIVINE’s
workflow). The support for relaxed memory is added in the instrumenta-
tion step, by replacing memory operations with calls to functions which
simulate relaxed behaviour. Essentially, all loads, stores, atomic com-
pound instructions1, and fences are replaced by calls to the appropriate
functions.2 All of the x86-TSO-simulating functions are implemented
so that they are executed atomically by DIVINE (i.e., not interleaved).

x86-TSO Memory Operations The most complex of these is the
load operation. It first finds all entries with overlap the loaded address
(matching entries) and out of these matching entries, it nondetermin-
istically selects entries which will be written before the load (selected
entries). All matching entries marked as flushed have to be selected for
writing. Similarly, all matching entries which occur in a store buffer
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s.b. 1
x ← 1
y ← 1
x ← 2
y ← 2

s.b. 2
x ← 3
y ← 3

void thread0() {
int a = y;
int b = x;

}

(a) Suppose thread0
is about to execute with
the displayed contents
of store buffers of two
other threads and sup-
pose it had nondeter-
ministically chosen to
load value 2 from y (de-
noted by green in the
figure). The entries
at the top of the store
buffers are the oldest
entries.

s.b. 1
x ← 1
x ← 2

s.b. 2
x ← 3
y ← 3

void thread0() {
int a = y;// →2
int b = x;

}

(b) At this point, x en-
tries of store buffer 1
are marked as flushed
(orange) and the y← 1
entry was removed as
it was succeeded by the
used entry y← 2. The
thread had nondeter-
ministically selected to
load x from store buffer
2.

s.b. 1 s.b. 2
y ← 3

void thread0() {
int a = y;// →2
int b = x;// →3

}

(c) In the load of
x, all x entries were
evicted from the buffers
– all the flushed en-
tries for x (which were
not selected) had to be
dropped before x← 3
was propagated to the
memory. The last entry
(y← 3) will remain in
the store buffer if y will
never be loaded in the
program again.

Figure 5.2: An illustration of the delayed flushing.

before a selected entry also have to be selected. Out of the selected
entries, one is selected to be written last – this will be the entry read
by the load. Next, selected entries are written, and all nonmatching
entries which precede them are marked as flushed. Finally, the load is
performed, either from the local store buffer if matching entry exists
there, or from the shared memory.

The remaining functions are relatively straightforward. Stores push
a new entry to the store buffer, possibly evicting the oldest entry from
the store buffer if the store buffer exceeds its size bound. Fences flush
all entries from the store buffer of the calling thread to the memory.
Atomic operations are basically a combination of a load, store, and a
fence – all atomics are sequentially consistent under x86-TSO. The only
intricate part of these operations is that if an entry is flushed out of the
store buffer, the entries from other store buffers which involve the same
memory location can also be nondeterministically flushed (to simulate
they could have been flushed before the given entry). This flushing is
similar to flushing performed in load. An example which shows a series
of loads can be found in Figure 5.2.

Correctness We will now argue that this way of implementing
x86-TSO is correct. First, the nondeterminism in selecting entries
to be flushed before a load serves the same purpose as the nondeter-
minism in the flusher thread of the more conventional implementation.
The only difference is that in the flusher-thread scenario the entries
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are flushed in order, while in our new approach we are selecting only
from the matching entries. Therefore, the difference between the two
approaches is only on those entries which are not loaded by the load
causing the flush, hence cannot be observed by the load. However,
any entry which would be flushed before the selected entries in the
flusher-thread approach is now marked with the flushed flag. This flag
makes sure that such an entry will be flushed before an address which
matches it is loaded, and therefore it behaves as if it was flushed. This
way, the in-thread store order is maintained.

5.3.2 Stores to Freed Memory

As x86-TSO simulation can delay memory stores, special care must
be taken to preserve memory safety of the program. More precisely,
it is necessary to prevent the transformed program from writing into
freed memory. This problem occurs if a store to dynamically allocated
memory is delayed after the memory is freed, or if a store to stack
location is delayed after the corresponding function had returned. This
problem does not require special handling in normal program execution
as both stack addresses as well as dynamic memory addresses remain to
be writable for the program even after they are freed (except for memory-
mapped files, but these have to be released by a system call which
includes sufficiently strong memory barrier which prevents memory
accesses from being delayed past the system call).

To solve the problem of freed memory, it is necessary to evict store
buffer entries which correspond to the freed memory just before the
memory is freed. For entries not marked as flushed, this eviction
concerns only store buffer of the thread which freed the memory. If
some other thread attempted to write to the freed memory, this is an
error as there is insufficient synchronisation between the freeing and the
store to the memory. However, corresponding entries marked as flushed
should be evicted from all store buffers, as these entries correspond to
changes which should have been already written to the shared memory.

Eviction of dynamic memory is straightforward – the program
transformation injects a call to the eviction function just before every
call to the function which releases memory. For eviction of stack memory,
it is necessary to evict all local addresses whenever a function exits,
regardless of the way it exits. This means we also have to take into
account exceptions and other ways of performing non-local transfers
of control (e.g., longjmp). The program transformation takes care of
tracking which local memory addresses should be evicted and inserts
code to evict them at the end of functions.

5.3.3 Integration with Other Parts of DIVINE

The integration of x86-TSO simulation with the rest of DIVINE is
straightforward in most cases. No changes are required in the DIVINE’s
execution engine or state space exploration algorithms. As for the li-
braries shipped with DIVINE, only minor tweaks were required. The
pthread implementation had to be modified to add full memory barrier
both at the beginning and at the end of every synchronising functions.
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[Roč+19] Ročkai et
al., “Reproducible Ex-
ecution of POSIX Pro-

grams with DiOS”.

[LRB18] Lauko et al., “Sym-
bolic Computation via

Program Transformation”.

This corresponds to barriers present in the implementations used for
normal execution, pthread mutexes and other primitives have to guar-
antee sequential consistency of the guarded operations (provided all
accesses are properly guarded).

The DIVINE’s operating system, DiOS, is used to implement low-
level threading as well as simulation of various filesystem APIs [Roč+19].
We had to add memory barrier into the system call entry which hands
control to DiOS. DiOS itself does not use relaxed memory simulation
– the implementation of x86-TSO operations detects that the code is
executed in the kernel mode and bypasses store buffers. In this way, the
entire DiOS executes as if under sequential consistency which makes
its design simpler and more robust. This synchronisation is easily
justifiable – system calls require a memory barrier or kernel lock in
most operating systems.

Relaxed Memory and Abstract Data DIVINE has support for
symbolic and abstract data (data nondeterminism) which uses program
transformation to implement symbolic manipulation of data [LRB18].
However, the integration of support for abstract data and for memory
models is not yet done as it requires more complex changes than just a
straightforward composition of the two program transformations. Per-
forming transformation for abstractions first is not possible currently, as
it introduces additional memory operations and therefore is not correct
in presence of relaxed memory. On the other hand, it should be possible
to run the transformation which introduces relaxed memory behaviour
first, and only after that run the transformation which introduces ab-
straction. However, this would mean that if an abstract value is ever
stored to memory (i.e., it is not only present in LLVM registers) then
all values loaded from the memory are potentially abstract, because the
store buffers themselves need to be abstract. Therefore, this approach
is not practical because it introduces too much extra overhead. Overall,
we defer this problem to future work.

5.3.4 Further Optimizations

We have implemented two further optimisations of our x86-TSO simu-
lation.

Static Local Variable Detection Accesses of local variables which
are not accessible to other threads need not use store buffering. For
this reason, we have inserted a static analysis pass which annotates
accesses to local memory before the x86-TSO instrumentation. The
instrumentation ignores such annotated accesses. The static analysis
can detect most local variables which are never accessed using pointers.

Dynamic Local Memory Detection DIVINE can also dynami-
cally detect if the given memory object is shared between threads (i.e.,
it is accessible from global variables or stacks of more then one thread).
Using this information, it is possible to dynamically bypass store buffers
for operations with non-shared memory objects. This optimisation is
correct even though the shared status of memory can change during its
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calls to functions of the
__VERIFIER_nondet_* fam-
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lifetime. A memory object o can become shared only when its address
is written to some memory object s which is already shared (or o can
become shared transitively through a series of pointers and intermediate
objects). For this to happen, there has to be a store to the already
shared object s, and this store has to be propagated to other threads.
Once the store of the address of o is executed and written to the store
buffer, o becomes shared, and any newer stores into it will go through
the store buffer. Furthermore, once this store is propagated, any store
which happened before turning o into a shared object also had to be
propagated as x86-TSO does not reorder stores. Therefore, there is no
reason to put stores to o through the store buffer if o is not shared.
This optimisation is not correct for memory models which allow store
reordering – for such memory models, we would need to know that the
object will never be shared during its lifetime.

5.3.5 Bounding the Size of Store Buffers

The complexity of analysis of programs under the x86-TSO memory
model is high. From the theoretical point of view, we know due
to [ABBM10] that reachability for programs with finite-state threads
which run under TSO is decidable, but non-primitive recursive (it is
in pspace for sequential consistency). The proof uses the so-called
SPARC TSO memory model [SPA94] that is very similar to x86-TSO.
However, the proof of decidability does not translate well to an efficient
decision procedure, and real-world programs are much more complex
than the finite-state systems used in the decidability proof.

For this reason, we would need to introduce unbounded store buffers
to properly verify real-world programs. Unfortunately, this can be
impractical, especially for programs which do not terminate. Therefore,
our program transformation inserts store buffers of limited size, limiting
thus the number of store operations that can be delayed at any given
time. The size of the store buffers is fully configurable, and it currently
defaults to 32, a value probably high enough to discover most bugs
which can be observed on real hardware.

Our implementation also supports the store buffers of unlimited
size (when size is set to 0). In this mode, programs with infinite loops
that write into shared memory will not have finite state space under
x86-TSO even if they have finite state space under sequential consistency.
Therefore, DIVINE will not terminate unless it discovers an error in
the program. Verification with unbounded buffers will still terminate
for terminating programs and for all programs with errors.

5.4 Evaluation

The implementation is available at http://divine.fi.muni.cz/2018/
x86tso/, together with information about how to use it. It is also
integrated into DIVINE releases. We compared our implementation with
the stateless model checker Nidhugg [Abd+15] and the bounded model
checker CBMC [CKL04; KT14]. For evaluation we used SV-COMP
2017 benchmarks from the Concurrency category [Bey17], excluding
benchmarks with data nondeterminism3 as DIVINE does not yet support
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Table 5.1: Comparison of the default configuration of DIVINE with
CBMC and Nidhugg.

CBMC Nidhugg DIVINE

finished 21 25 27
TSO bugs 3 3 9
unique 5 3 5

4 The complete invocation
is divine check --svcomp

--relaxed-memory
tso BENCH.c.

data nondeterminism with relaxed memory. Furthermore, due to the
limitation of stateless model checking with DPOR, Nidhugg cannot
handle data nondeterminism at all. There are 55 benchmarks in total.

The evaluation was performed on a machine with two dual core
Intel Xeon 5130 processors running at 2 GHz with 16 GB of RAM.
Each tool was running with memory limit set to 10 GB and time limit
set to 1 hour. The tools were not limited in the number of CPUs they
can use.

We have used CBMC version 5.8 with the option --mm tso. Since
there is no official release of Nidhugg, we have used version 0.2 from git,
commit id 375c554 with -tso option to enable relaxed memory sup-
port and inserted a definition of the __VERIFIER_error function. For
DIVINE, we have used the --svcomp option to enable support for SV-
COMP atomic sections (which are supported by default by CBMC and
Nidhugg), and we disabled nondeterministic memory failure by using the
divine check command (SV-COMP does not consider the possibility
of allocation failure). To enable x86-TSO analysis, --relaxed-memory
tso is used for DIVINE.4 The buffer bound was the default value (32)
unless stated otherwise.

Table 5.1 compares performance of the default configuration of
DIVINE with the remaining tools. The line “finished” shows the total
number of benchmarks for which the verification task finished with the
given limits. From these the line “TSO bugs” shows the number of errors
caused by relaxed memory in benchmarks which were not supposed to
contain any bugs under sequential consistency. All discovered errors
were manually checked to really be observable under the x86-TSO
memory model. Finally, “unique” shows the number of benchmarks
solved only by the given tool and not the other two. There were only 8
benchmarks solved by all three tools, all of them without any errors
found.

Table 5.2 shows effects of buffer size bound and improvements
described in Section 5.3.4. It can be seen that all versions perform very
similarly, only one more benchmark was solved by the versions with
dynamic shared object detection (the remaining solved benchmarks
were the same for all versions). The number of solved benchmarks
remains the same regardless of used store buffer bound.

Table 5.3 offers more detailed look at the 26 benchmarks solved
by all versions of DIVINE. It shows the aggregate differences in state
space sizes and solving times. It can be seen that the dynamic shared
object detection improves performance significantly. Interestingly, we
can see that of the 3 versions which differ only in store buffer size
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Table 5.2: Comparison of various configurations of DIVINE. The
“base” version uses none of the improvements from Section 5.3.4. The
configurations marked with “s” add the static local variable optimisation,
while the configurations marked with “d” add the dynamic detection
of non-shared memory objects. The “+sdu” configuration has both
optimisations enabled and it has unbounded buffers. Finally, the “+sd4”
has buffer bound set to 4 entries instead of the default 32 entries. The
default version is “+sd”.

base +s +d +sd +sdu +sd4

finished 26 26 27 27 27 27
TSO bugs 8 8 9 9 9 9

Table 5.3: Comparison of various versions of DIVINE on benchmarks
on the 26 which all the versions finished. For the description of these
versions, refer to Table 5.2.

base +s +d +sd +sdu +sd4

states 252 k 263 k 250 k 231 k 206 k 296 k
time 2:14:49 2:17:13 1:09:23 1:05:05 0:58:28 1:24:59
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(“+sd”, “+sdu”, and “+sd4”), the unbounded version performs the best.
We expect this to be caused by the nondeterminism in flushing the
excessive entries out of the store buffer when the bound is reached –
this can trigger flushing of matching entries from other store buffers
and therefore increase nondeterminism.

5.5 Related work

A lot of techniques have support for program analysis under relaxed
memory models, most of these were already described in Chapter 3
and therefore, we will not replicate the description here. A lot of these
techniques is build on stateless model checking (see also Section 3.2)
including [DL15; ZKW15; HH16; Abd+17] for x86-TSO and [AAJL16;
ND16; KLSV17; AAJN18] for other memory models. Bounded model
checking (see also Section 3.4) is another popular choice for analysis
of x86-TSO [AKT13; Gav+19; Tom+17] and other memory models
[BAM07; AABN17]. An explicit-state approach to programs running
under the C# relaxed memory model is presented in [HH16]. There are
also previous works which use program transformation in the analysis
of relaxed memory models [AKNT13; AABN17; ŠRB16].

Our approach to simulation of x86-TSO is somewhat similar to the
approach presented in [AAJN18]. Both approaches perform nonde-
terministic choice primarily on memory loads. However, [AAJN18] is
focusing on the release-acquire fragment of C11 and does not support
sequential consistency. Similarly, [KLSV17] presents a technique that
attempts to minimise nondeterminism, this time in the analysis of a
modified version of the C11 memory model.
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There are also some approaches to theanalysis of relaxed memory
models which were not mentioned in Chapter 3, mostly because they lack
implementation which works with realistic programming languages. In
[ABP11] a program transformation that uses context switch bounding
but not buffer bounding is presented. It uses additional copies for
shared variables for TSO simulation. However, the evaluated was
performed with manually converted programs. An unbounded approach
to verification of programs under TSO is presented in [LW10]. It uses
store buffers represented by automata and leverages cycle iteration
acceleration to get a representation of store buffers on paths which
would form cycles if values in store buffers were disregarded. It targets
a modified Promela modelling language [Hol97]. Another unbounded
approach is presented in [BCDM15]. It introduces TSO behaviours
lazily by iterative refinement, and while it is not complete, it should
eventually find all errors. The work [DMVY13] presents verification of
(potentially infinite state space) programs under TSO and PSO (with
bounded store buffers) using predicate abstraction. It first analyses
the program under sequential consistency and then extrapolates the
predicates to TSO/PSO and performs further analysis (and possibly
refinement).

Absence of Relaxed Behaviour There are also techniques which
aim to solve the problem of absence of relaxed behaviour in a given
program. For these methods, the question is whether a program,
when running under a relaxed memory model, exhibits any runs not
possible under sequential consistency. This problem is explored under
many names, e.g. (TSO-)safety [BM08], robustness [BDM13; DM14],
stability [AM11], and monitoring of sequential consistency [BSS11].
Similar techniques are used in [YGL04] to detect data races in Java
programs. A related problem of correspondence between a parallel and
sequential implementation of a data structure is explored in [OD17].
Some of these techniques can be also used to insert memory fences into
the programs to recover sequential consistency.

Neither of these techniques are directly comparable to our method.
For these techniques, a program is incorrect if it exhibits relaxed be-
haviour, while for us, it is incorrect if it violates specification (e.g.,
assertion safety and memory safety). In practice, the appearance of
relaxed behaviour is often not a problem, provided the overall behaviour
of the data structure or algorithm matches the desired specification.
In many lock-free data structures, relaxed behaviour is essential to
achieving high performance.

Other Methods In [PD95], the SPARC hierarchy of memory mod-
els (TSO, PSO, RMO) is modelled using encoding from assembly to
Murϕ [Dil96]. A completely different approach is taken in [TVD14].
This work introduces a separation logic GPS, which allows proving prop-
erties about programs using (a fragment of) the C11 memory model.
This work is intended for manual proving of properties of parallel pro-
grams, not for automatic verification. The memory model used in this
work is not complete; it lacks relaxed and release-consume accesses.
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Another fragment of the C11 memory model is targeted by the RSL
separation logic introduced in [VN13].

5.6 Conclusion

We showed that by careful design of simulation of relaxed memory
behaviour we can use the standard model checker supporting only
the sequential consistency to efficiently detect relaxed memory errors
in programs that are otherwise correct under sequentially consistent
memory. Moreover, according to our experimental evaluation, our
explicit-state model checking approach outperforms a state-of-the-art
stateless model checker as well as bounded model checker, which is
actually quite an unexpected result. We also show that many of the used
benchmarks can be solved only by one or two of the three evaluated tools,
which highlights the importance of employing different approaches to
the analysis of programs under relaxed memory. Finally, we show that
for terminating programs, our approach is viable both with bounded
and unbounded store buffer size.
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Chapter 6

Local Nontermination
analysis for Parallel
Programs

Text of this chapter is based on [ŠB19]. The benchmarks are unmodified
from the original paper.

One of the critical problems with parallel programs is ensuring that they
do not hang or wait indefinitely – i.e., there are no deadlocks, livelocks
and the program proceeds towards its goals. In this work, we present a
practical approach to detection of nonterminating sections of programs
written in C or C++ and its implementation into the DIVINE model
checker. This complements the existing techniques for finding safety
violations such as assertion failures and memory errors. Our approach
makes it possible to detect partial deadlocks and livelocks, i.e., those
situations in which some of the threads are progressing normally while
the others are waiting indefinitely. The approach is also applicable
to proving nontermination of components in programs that do not
terminate themselves, but the components should eventually finish their
work. Such programs include, for example, server-like applications
that have infinite event loops, but each event should be handled in a
finite time. The termination criteria can be user-provided; however,
DIVINE comes with the set of built-in termination criteria suited for the
analysis of programs with mutexes and other common synchronisation
primitives.

6.1 Motivation and Introduction

A significant limitation of many existing tools for analysis of parallel
programs in programming languages such as C and C++ is that they are
only concerned with safety checking – they check that a bad state of the
program is unreachable. Most common examples of bad states include
assertion failures and memory errors (such as invalid memory accesses
and memory leaks). Unfortunately, this is far from being sufficient in
practice. See, for example, the code given in Figure 6.1. That piece of
code easily passes any safety checks; however, when executed in reality,
it often hangs and does not terminate.
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// can be used for
// synchronisation
std::atomic< int > x = 0;

void worker() {
while ( x != 0 ) { } //

wait↪→

do_work();
}

int main() {
// start thread
// running worker
std::thread t( worker );
x = 42; // let worker run
// ...
t.join();

}

Figure 6.1: A simple C++ code snippet with two threads, it uses
C++ standard threading support and atomic variables. A programmer’s
intention was that the worker function first waits until x becomes non-
zero, and then proceeds with do_work. However, the waiting condition
(at the first line of the worker function) is incorrectly just the opposite.
Therefore, if main executes x = 42 before waiting in worker starts, the
wait will never end (assuming x is never set to 0 again). Note that none
of safety checks is able to detect that the program might hang. For the
rest of the paper, we will omit the std:: namespace to simplify the
notation.

1 A finite state space
can contain cyclical in-

finite behaviour – a
loop in the state space.

x ¬x

In this work, we report about our new technique for checking
nontermination for parallel programs written in C and C++ that may
be applied to programs with arbitrary synchronisation primitives. In
particular, we can check that a specified part of a program finishes
whenever its execution has been started, which in turn enables us to
check for problems such as partial deadlocks or local nontermination.
Note that our technique does not require the program under analysis
to terminate at all. Therefore, it is also applicable to programs that do
not terminate but have some parts that are supposed to finish. It does;
however, require that the program has a finite state space because our
technique is built on top of a state space exploration. Note that even
for a finite state space, a program may exhibit infinite behaviour.1

The main observation is that a program often has sections which
once entered should also be left: for example critical sections, certain
function calls (such as pop from a queue, which can wait for an element
to become available; or a thread join, etc.), or parts of code which wait
for a resource or an action (waiting for a mutex, waiting on a barrier,
waiting until a variable is set to a given value). If the analysis of the
program focuses on such sections, it is possible to detect when these
sections are started but do not terminate. This covers partial deadlock
and partial livelock detection in which such sections participate. We
also provide a global nontermination detection mode that decides if the
program as a whole terminates, nevertheless this is not the primary
goal of our approach.

Our technique is built on top of explicit-state model checking. We
believe that while explicit-state model checking is prone to state space
explosion, it is well suited for the detection of problems related to infinite
runs of parallel programs which cannot be handled by techniques such
as bounded model checking or stateless model checking. While our
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approach is closely related to checking for properties written in temporal
logic such as LTL or CTL*, our local nontermination technique cannot
be substituted equivalently with CTL* model checking. One of the
reasons is that these logics are unable to relate to entities which are
dynamically created during the execution of the program, and there is
no bound to their number. For example, there is no way to express in
CTL* that for all mutexes it holds that if they are locked, they are also
eventually unlocked unless all the mutexes are enumerated beforehand.
This is an essential concern for realistic programs where mutexes and
other synchronisation primitives can be created dynamically at runtime,
and their number can depend on the computation of the program
itself. Furthermore, to avoid counterexamples which are unrealistic
with practical thread schedulers, we need a form of fairness of process
scheduling different from the fairness constraints used typically with
LTL model checking.

The approach described in this work is implemented in a modi-
fied version of the DIVINE model checker [Bar+17; RŠČB18]. The
implementation, as well as all the examples, can be found on the paper
webpage2.

6.2 Resource Sections

A resource section of a program is a block of code with an identifier of
a resource and type of the resource section. Each resource section is
delimited in the source code by section start and section end annotations.
Examples of such sections are a mutex-waiting section that denotes
a block of code in which a thread is waiting for the acquisition of a
mutex. Mutex-waiting section is identified by a mutex and the thread
which waits for it. Another example can be a critical section, which
is identified by a mutex (there is no need to use a thread for the
identification, as a mutex can be owned by at most one thread at any
point in time). Resource section can also be bound to a function – in
this case, it is identified by the stack frame of the function and by the
program counter of its beginning. Regardless of the identification, the
idea for a resource section is that once it is entered, it should also be
exited.

As a resource section can be entered repeatedly (for example when
it is on a cycle or in a function which is called multiple times), we
will define a resource section instance to be a particular execution of a
resource section with the given identifier. The author of annotations
which define resource sections should ensure that the same resource
section is not entered again before it is left. This does not limit the
usage of function-associated resource sections to non-recursive functions
– each such section is also identified by the stack frame, and therefore
resource sections corresponding to different recursion depths are different
resource sections. Similarly, a program can be in multiple resource
sections which wait for the same mutex at the same time, each of them
corresponding to a different waiting thread.

We propose to introduce resource sections in two ways – some
synchronisation primitives (mutexes, condition variable, threads) have

http://dx.doi.org/10.1007/978-3-319-68167-2_14
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1 mutex m;
2

3 void worker() {
4 unique_lock lock(m); // wait resource section,
5 // start of critical section
6 do_work();
7 } // unlock = end of critical section
8

9 int main() {
10 thread w(worker);
11 do_work();
12 w.join(); // wait resource section
13 }

Figure 6.2: Examples of predefined resource sections. There is a
resource section in the mutex lock on line 4 (active while the thread
waits for the mutex to become available), a resource sections which
corresponds to the critical section on lines 4–6, and a resource section
in the join of thread w on line 12 (active while main waits for worker
to finish).

built-in resource sections in DIVINE, and the user can introduce their
own resource sections. Examples of resource sections can be seen in
Figure 6.2 and Figure 6.3.

6.3 Local Nontermination

With our local nontermination property, we aim at detection of resource
section instances which are entered but are never left – nonterminating
resource section instances. We will first use examples of terminating
and nonterminating resource section instances, and then we will define
them precisely.

A simple example can be seen in Figure 6.4a. There we have a mutex
which is locked, but never unlocked as the corresponding critical section
contains an infinite loop. We have four different resource sections in
this example. Two of them corresponds to the critical sections guarded
by the mutex, and two of them are hidden inside unique_lock, where
they implement waiting until the mutex is unlocked. Nonterminating
resource section instances are the instances corresponding to the critical
section in thread0 and any instances corresponding to waiting for the
mutex in thread1 that is executed after the critical section in thread0
is entered. We can fix this example by putting the critical section in
thread0 inside the infinite loop, as shown in Figure 6.4b.

Suppose that we have defined nonterminating section as one in
which it is possible to stay indefinitely (i.e., for the specific case of
waiting for m in thread1, termination could be expressed by LTL
formula G(wait-m-t1-start =⇒ Fwait-m-t1-end)). We can witness
the existence of such nonterminating section in a program with a finite
state space by a lasso-shaped path. Such the nontermination witness
can also be found for the program in Figure 6.4b, even though the
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1 #include <atomic>
2 #include <rst/termsec.h> // for user-defined
3 // resource sections
4 struct SpinLock {
5 void lock() {
6 { // define an explicit scope
7 termsec::CheckWait check( &_flag );
8 while ( _flag.test_and_set() ) { }
9 } // end of scope -- end of 'check' resource section

10 termsec_begin_exclusive( &_flag );
11 }
12

13 void unlock() {
14 termsec_end_exclusive( &_flag );
15 _flag.clear();
16 }
17

18 private:
19 std::atomic_flag _flag = ATOMIC_FLAG_INIT;
20 };

Figure 6.3: User defined resource sections in a spinlock implementation. The spinlock is imple-
mented using a C++ atomic flag which is an atomic variable which has two operations – clear
which resets its value to false, and test_and_set which sets its value to true and returns the
original value. In this spinlock the value true indicates that the spinlock is locked.
One resource section guards the wait for _flag to change at lines 7–8. The other resource section
guards the critical section of the spinlock, it starts in lock at line 10 and ends in unlock at line 14.
Both resource sections are identified by the address of the _flag variable which uniquely identifies
a particular instance of a SpinLock class. Furthermore, the waiting resource section (which uses
CheckWait helper) is automatically also identified by the thread which executes it – this allows more
than one thread to wait for the same spin lock.
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mutex m;

void thread0() {
// Error:
unique_lock lock(m);
while (true) {

do_work();
}

} // unlock

void thread1() {
while (true) {

unique_lock lock(m);
do_other_work();

} // unlock
}

(a) A program with a nonterminating critical sec-
tion (in thread0) and a deadlock (if thread0 enters
its critical section, thread1 will wait infinitely). In
C++ it is possible to use scope-based locks: the crit-
ical section belonging to mutex m is entered when
unique_lock lock(m) is executed and left at the
end of the scope in which the lock variable was
defined (at the matching curly brace; also marked
with comment // unlock ).

mutex m;

void thread0() {
// Fixed:
while (true) {

unique_lock lock(m);
do_work();

} // unlock
}

void thread1() {
while (true) {

unique_lock lock(m);
do_other_work();

} // unlock
}

(b) A fixed version of the program from Figure 6.4a
(the start of the critical section was moved from the
position // Error in the left code to // Fixed and
therefore the critical section can end now). Intu-
itively, each critical section in this program termi-
nates. However, as we can see in Figure 6.5, it is
possible to find an infinite path in the state space
of this program that infinitely waits for one of the
critical sections. To make matters worse, this path
can respect weak fairness.

Figure 6.4: Example programs with nonterminating resource section (a) and terminating resource
sections (b).

0: lock(m) 1: wait(m) 0: unlock(m)

0: do_work()0: lock(m)

1: lock(m)

Figure 6.5: A fragment of state space of program in Figure 6.4b with starving lasso marked
with bold edges. Each edge is marked by the thread it belongs to and the action of this thread.
Furthermore, to ease the orientation, actions belonging to thread0 are marked with continuous red
edges while actions belonging to thread1 are marked with dashed blue edges. We can see that both
threads participate in the repeated part of the counterexample and thread0 is denied the possibility
(starves) to execute after 0: unlock(m) (the thin blue dashed edge).
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code might intuitively seem to terminate. First, thread0 executes its
lock action, then thread1 starts waiting. If thread0 always executes
unlock and lock before thread1 is allowed to run, thread1 will never
be able to finish waiting. The counterexample is illustrated in Figure 6.5
and is valid also under weak fairness assumptions.

In general, if a thread waits for some condition which is both
infinitely often true and infinitely often false, there can be a run in
which the waiting thread is only allowed to run at those moments when
the condition is false. This type of runs is present in any program that
uses busy waiting, which is very common in practice. For this practical
reason, we cannot rely on the definition of nontermination as expressed
with the LTL formula above, and we need a different way to describe
nonterminating sections.

Definition 6.1: Nonterminating Resource Section Instance
A resource section instance is nonterminating if and only if it can reach
a point from which it is not possible to reach its end.

For a particular resource section (e.g., waiting for m in thread1),
checking for the absence of nonterminating resource section instances
can be expressed using a CTL* property

AG (wait-m-t1-start =⇒ A[(EFwait-m-t1-end)W wait-m-t1-end])

(where W is the weak until operator).
In general, the CTL* approach cannot be used, as it requires the set

of resource sections to be known before the analysis starts, so that the
formula can be created as a conjunction of formulas for each resource
section. This is hard to do if resource sections can be created at runtime,
which is often the case when dealing with programs in languages such
as C and C++ – the number of objects such as threads, mutexes, or
function invocations which are used to identify resource sections might
be hard to determine without exploration of all the runs of the program.

6.4 Detection of Nontermination

The detection of nonterminating resource section instances in the context
of explicit-state model checking proceeds as follows. The basic idea
behind the detection of nonterminating resource section instances is that
the model checker focuses on them one at a time. Every time a resource
section instance is about to be entered during the state space exploration,
the algorithm introduces a nondeterministic branching to the state space
graph. In one branch, the resource section instance remains inactive,
in which case the state space exploration proceeds as usual to discover
other resource sections. However, in the other branch, the instance
becomes active. Under this branch, the resource section instance is
checked for being nonterminating – it becomes active resource section
instance (ARSI). Note that the nondeterministic branching happens
only outside of active resource sections, which means the ARSIs cannot
be nested. Once the state space graph in the active branch reaches a
state that is out of the scope of an ARSI, the state space exploration
within this branch is stopped (a state with no successors is generated
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outside the ARSI). Active resource section instances cannot be nested,
but for any instance of a resource section nested in an active section
instance, there is also an instance which is nested in an inactive section
instance, and therefore can become active elsewhere in the state space.
As a result of this construction, for every nonterminating resource
section in the original program, there is a corresponding ARSI in the
augmented state space graph. To let the exploration algorithm know
that it is exploring a part of the state space that is within an ARSI, we
mark all edges within ARSIs as accepting.3

An illustration of a state space graph augmented with nondeterminis-
tic choices and accepting edges is given in Figure 6.6. This augmentation
of the state space can be performed by program instrumentation. Now
to discover ARSIs which are nonterminating according to Definition 6.1,
it is enough to detect terminal strongly connected components made of
accepting edges only.

6.4.1 Detection Algorithm

Henceforward, we assume the state space graph is finite, and if a run
of the program to be verified terminates then this fact is reflected
by a state with no successors in the underlying state space graph.
Note that the program may terminate even within a resource section
instance. An ARSI terminates either by reaching the end of the section
instance or by the termination of the whole underlying program. In
both cases, this means a state with no successors is generated and
reachable from the ARSI entrance point. Finally, we assume that any
waiting is implemented in a nonblocking way; in particular, we require
that waiting operations give rise to cycles in the state space of the
waiting thread.4 As a result, the detection of nonterminating ARSIs can
be performed as a search for an accepting terminal strongly connected
component in the state space graph.

Definition 6.2: Terminal Strongly Connected Component
A strongly connected component S is terminal5 if for each state v in S
all successors of v are in S (there are no edges out of S).

Definition 6.3: Fully Accepting Terminal SCC (FATSCC)
A terminal strongly connected component of the state space is fully
accepting (fully accepting terminal SCC, or FATSCC ) if and only if it
is nontrivial and all its edges are accepting.

Theorem 6.1. A program contains a nonterminating resource section
instance if and only if its state space graph contains a fully accepting
terminal strongly connected component.

Proof. Assume the program contains a nonterminating ARSI A. Then
there must exist a set of states in A from which neither program end
nor the corresponding resource section end can be reached. Among
these states, there must be a subset which can be repeated indefinitely
and cannot be left – a nontrivial terminal SCC which is part of an
ARSI and therefore it is fully accepting – a FATSCC in the state space.

For the other direction, let us assume that there is a FATSCC in
the state space graph. Since any edge which enters or leaves an ARSI is
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mutex m1, m2;
{

unique_lock l1(m1);
do_work_1();
{

unique_lock l2(m2);
do_work_2();

} // unlock(m2)
} // unlock(m1)

ARSI

ARSI

lock(m1) lock(m1)

do_work_1

lock(m2)

do_work_2

unlock(m2)

unlock(m1)

do_work_1

lock(m2)

do_work_2

unlock(m2)

unlock(m1)

end

lock(m2)

do_work_2

unlock(m2)

Figure 6.6: A small example of a program with two resource section instances (on the top) and its
state space, which shows active resource section instances (ARSIs; on the bottom). In order to keep
the state space simple, this example program is sequential and deterministic; the nondeterminism is
caused only by the construction which gives rise to ARSIs. The resource section instances belonging
to the critical section of mutex m1 are wrapped in a solid rectangle in the image, while resource
section instances belonging to m2 are wrapped in a dashed rectangle. ARSIs are denoted by thick
frame and yellow background and accepting edges in the state space are marked by thick arcs. Recall
that active resource section instances cannot be nested. Crosses at the end of edges denote points
where exploration of the state space was terminated due to reaching the end of an active resource
section instance.
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[BK08] Baier et al., “Prin-
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6 For our purposes, a
weakly-fair scheduler is

a scheduler which ensures
that on every accepting
cycle in the state space

all threads which existed
(and were not blocked) dur-

ing the execution of this
cycle were also executed

at least once on the cycle.

not accepting (which follows directly from the construction of the state
space graph), all states that are part of the FATSCC must be states
within a single ARSI. Since the component is terminal and nontrivial,
it cannot be left. Furthermore, a program termination point cannot be
part of the FATSCC as it has no successors and an ARSI end cannot be
part the FATSCC as the edges going to it are not accepting. Therefore,
it is impossible to reach either a program termination point or a state
that would be outside of the resource section instance from the FATSCC,
therefore, the FATSCC witnesses a resource section instance that does
not terminate.

To detect the presence of a FATSCC in the state space graph, we
employ the standard Tarjan’s algorithm for finding strongly connected
components. To decide if an SCC is terminal, it suffices to check that
there are no edges going from it to any different SCC. Finally, to detect
if a terminal component is nontrivial and fully accepting it is enough
to check that the component contains at least one state with some
successors (it is nontrivial) and that all states of the component have
only accepting outgoing edges (it is fully accepting). These are minor
modifications of the algorithm. Furthermore, it is possible to extend the
algorithm to also perform safety checking while checking for nontermina-
tion – when a new edge with an error label is traversed, the exploration
can be terminated immediately with a safety counterexample. This
way, any need for separate safety checking is eliminated.

Note that it is also possible to define global nontermination using
Definition 6.1. In this case, we only need to treat the whole program
as a single active resource section instance.

6.4.2 Scheduling and Fairness

To provide further context, we also want to discuss the relation of
our nontermination property to LTL model checking with fairness.
Fairness constraints [BK08, Chapter 3.5] are needed in the analysis of
temporal properties of parallel systems to avoid reporting of unrealistic
counterexamples, such as those in which an enabled thread never gets
the chance to make an action. However, even if we use LTL formula
to describe nontermination and allow for LTL model checking under
weak fairness, we still may obtain counterexamples that are totally
unrealistic. This is because a weakly-fair scheduler6 admits runs in
which the context switches that happen among participating threads
are very regular, hence unrealistic.

The nontermination as defined in Definition 6.1 can be seen as a
manifestation of an additional assumption about the thread scheduler.
It claims that the scheduler is in essence somehow irregular, i.e., it will
not allow for a context switch always after a fixed number of instructions
or at a specific location in the code. Another way of looking at this
is to assume that the scheduler is probabilistic and assigns some non-
zero probability to interruption between any two instructions. With
a probabilistic scheduler, we can equivalently define nonterminating
resource section instance as a section instance which can get to the
point when there is zero probability of reaching its end. Under the
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7 https://divine.fi.muni.
cz/2019/lnterm

[Bar+17] Baranová et al.,
“Model Checking of C and
C++ with DIVINE 4”.

probabilistic view, we can also say that programs we denote as correct,
i.e., without nonterminating sections, have zero probability of looping
forever.

6.4.3 Implementation and Usage

We have implemented our nontermination detection approach in a
branch of the DIVINE model checker. Resource sections can be specified
by annotations in the source code of the program to be analysed
by the user of the tool. Furthermore, DIVINE provides predefined
resource sections for various POSIX thread (pthread) synchronisation
primitives, namely for mutexes (including recursive and reader-writer
mutexes), condition variables, barriers, and joining of threads. Since
C++ threading support in DIVINE uses the libc++ library which uses
POSIX threads, these resource sections are also used for native C++
threading.

User-defined annotations can be given in one of the following cate-
gories: exclusive section, waiting for an event, and waiting for function
end. For user-defined resource sections, DIVINE provides C and C++
interface which can be found on the web page accompanying this work.7

To make it possible to specify which resource section types should be
considered for analysis, we use program instrumentation, which enables
resource sections based on command line arguments (for more details
see the accompanying web page). The instrumentation also ensures
that edges which are part of an ARSI are accepting.

The detection of nonterminating resource sections in DIVINE uses
Tarjan’s algorithm for finding strongly connected components. The
algorithm runs on-the-fly, which means that it generates the state
space graph as needed, and therefore, it can terminate before the entire
state space graph is explored. The algorithm finishes if it finds a fully
accepting terminal strongly connected component, if it discovers a safety
error (to avoid the need for a separate safety verification), or once the
entire state space is explored.

6.4.4 Interaction with Other Features of DIVINE

Since DIVINE is a research tool, not all the features implemented
within the tool are expected to run together. In this case, there are
some features of DIVINE which interfere with local nontermination
detection in a not so obvious way.

Counterexamples When an error is found, DIVINE has support to
show a counterexample and walk through it using an interactive simula-
tor [Bar+17]. For safety properties, this counterexample is a sequence of
states which ends with an error. For verification of properties described
by LTL or Büchi automata (which are partially supported by DIVINE),
the counterexample is a lasso-shaped trace. For nontermination, the
part of the state space to be reported consists of a fully accepting
terminal strongly connected component and a path that leads to it.
However, it is not practical to output the information about the whole
SCC, as it can be large. For this reason, DIVINE gives only a trace to

https://divine.fi.muni.cz/2019/lnterm
https://divine.fi.muni.cz/2019/lnterm
http://dx.doi.org/10.1007/978-3-319-68167-2_14
http://dx.doi.org/10.1007/978-3-319-68167-2_14
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the first state of the FATSCC (i.e., the first state from which end of
the given resource section instance is not reachable).

Spurious Wakeups Condition variables are often used in parallel
programs to block threads until some event occurs (e.g., a shared queue
becomes non-empty). They provide a function which blocks the current
thread (wait) and a function which signals the condition variable and
causes waiting threads to proceed (signal). In most implementations,
including C++ standard APIs and platform-specific APIs on Windows
and Linux, wait is allowed to return before it is signalled: this behaviour
is called spurious wakeup and programmers must take it into account
when using condition variables.

To help with the discovery of bugs caused by spurious wakeup,
DIVINE simulates spurious wakeup using nondeterministic choice. For
nontermination detection, it is necessary to ensure that any spurious
wakeup does not hide nontermination – we want to report resource
section instances which can be only left by spurious wakeup as non-
terminating. This can be done by careful implementation of the wait
function in DIVINE – it first nondeterministically decides if a spurious
wakeup will happen, and then, if it is not happening, it enters resource
section which waits for signal and cannot be woken up spuriously.
If the spurious wakeup is simulated, it behaves as if the thread was
blocked and allows other threads to run. Once the waiting thread
is used again for generation of successor states, it is unblocked and
wait returns spuriously. The exhaustive enumeration of possible thread
interleavings ensures that other threads can run arbitrarily long.

Data Nondeterminism and Symbolic Data To make it possible
to verify programs that depend on input data, DIVINE has support
for symbolic values [LRB18]. In an analysis of programs with symbolic
values, the computation can be split when a branch depends on a
symbolic value. This splitting can cause problems for nontermination
detection if leaving some resource section instance requires a particular
value of an input variable. Therefore, in the presence of symbolic data,
nontermination checking might miss some instances of nontermination.
We defer this problem to future work.

Relaxed Memory Models DIVINE has support for analysis of par-
allel programs under the x86-TSO memory model of Intel and AMD
CPUs ([ŠB18] and Chapter 5), which allows the program to exhibit
behaviour not present under the interleaving semantics of threads. One
of the main problems in interaction between nontermination and relaxed
memory is that relaxed memory models over-approximate the possible
behaviours of the system to cover all possibilities of contemporary and
presumably also future processors of a given architecture. As nonter-
mination is checking for absence of termination, it can spuriously hide
nontermination if the state space of the program is over-approximated.
Again, we defer this problem to future work.

http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
http://dx.doi.org/10.1007/978-3-030-02450-5_8
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Figure 6.7: Scatter plots which compare local nontermination detec-
tion with safety checking as implemented in DIVINE. Both axes use
a logarithmic scale. The dashed and dotted lines in wall time graphs
signify 10× and 100× difference respectively. For graphs of memory
usage, the dotted lines signify 3× difference and the dashed 10× differ-
ence. Green squares correspond to benchmarks which were error-less in
both modes and blue circles correspond to benchmarks which contained
errors in both cases. Red triangles correspond to benchmarks which
contained a nonterminating section. The crosses on the outer edge of
the plot correspond to timeouts and out-of-memory errors. All the fail-
ures for local/global nontermination were due to timeouts, benchmarks
which failed with out-of-memory did so in all cases.

8 https://www.boost.org/
doc/libs/1_69_0/doc/
html/thread.html

6.5 Evaluation

To our best knowledge, there is no suitable benchmark set that would
cover termination in parallel programs. Therefore, we had to develop a
suitable benchmark on our own. We naturally wanted to analyse the
performance of our verification method on real-world data structures.
Unfortunately, it is hard to reuse any existing real-world test cases
of parallel data structures for verification, as these tests are usually
developed as stress tests. Stress tests use large amounts of data and
are supposed to be run for a long time in order to maximise a chance
that a parallelism-related bug is found during the testing period. For
the purpose of application of a formal verification tool such as DIVINE,
the mentioned approach to testing of parallel programs is inappropriate.
Since a model checker explores all interleavings of the program system-
atically within a single execution, further repeated executions, such as
the ones within a stress test, are useless and only add to the complexity
of the verification task. For these reasons, the tests we included in our
benchmark are tests we created or adapted and modified specifically
for the purpose of nontermination detection we wanted to evaluate.

To preserve some diversity at least, we opted for the following
tests to be included in our benchmark. First, to cover some real-world
scenarios, we created some tests for the Thread library from widely
used C++ Boost8 (35 test cases). Second, we used some tests from

https://www.boost.org/doc/libs/1_69_0/doc/html/thread.html
https://www.boost.org/doc/libs/1_69_0/doc/html/thread.html
https://www.boost.org/doc/libs/1_69_0/doc/html/thread.html
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Figure 6.8: A comparison of state space sizes for local nontermination
and safety. The dashed and dotted lines signify 10× and 100× difference
respectively. The meaning of the marks in the graph is the same as in
Figure 6.7.

[BRŠW15] Barnat et al.,
“Fast, Dynamically-Sized
Concurrent Hash Table”.

DIVINE project itself (8 test cases), and finally, we developed a couple
of specific tests for small programs demonstrating the behaviour of local
nontermination with various synchronisation primitives (16 test cases).
Overall, the benchmark covered usage of lock-free and mutex guarded
parallel data structures (e.g. parallel queues), synchronised variables,
less-used synchronisation primitives such as reader-writer locks, or a
single-producer-single-consumer queue and the parallel hashset from
[BRŠW15].

To evaluate our verification approach, we let each test run with a 4
hours timeout and 16 GB memory limit. We measured runtime and
memory requirements for the three following configurations of our tool:

safety A baseline configuration, in which the tool merely generates
the state space of the program and checks for the standard safety
issues, such as assertion violation, invalid memory access, etc. In
this mode, no nontermination can be detected.

local nontermination The configuration in which the nonterminating
resource section detection is used. Under this configuration, the
state space of the original program is expanded with every entrance
to the resource section as described in Section 6.3.

global nontermination The configuration that treats the whole pro-
gram as a single resource section and detects if it terminates
according to Definition 6.1. Since this configuration does not
introduce additional nondeterminism, the state space of the pro-
gram is roughly the same size as for safety.

The difference between local and global nontermination configurations
is in the shape of the state space; both use the same algorithm (Tarjan’s
algorithm for SCC decomposition). Thanks to this difference, local
nontermination can be applied to programs which should not terminate,
to check if each of its resource sections terminate.

http://dx.doi.org/10.1007/978-3-319-23404-5_5
http://dx.doi.org/10.1007/978-3-319-23404-5_5
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Comparison of safety and local nontermination can be seen in
Figure 6.7. We evaluate wall time and memory consumption – in
practice, heavy-duty tools like DIVINE are likely to be used in long-
running overnight tests (preferably only if anything relevant for the
test changed since the last run), therefore longer runtimes might not
be a big problem up to some point, but it is important to test that the
verification tasks fit in some reasonable amount of memory. As we can
see, the time overhead of local nontermination configuration is quite
significant (up to 59×) especially for larger programs which are correct.
As for memory consumption, we can see that total overhead is less than
threefold, which is mostly due to the state space compression employed
by DIVINE.

The wall time blow-up is due to extra nondeterminism introduced
by active resource sections – the state space can grow by a factor that is
related to the number of resource section instances encountered in the
original state space. Note that many resource sections are likely to be
very short. For programs that were invalid, i.e., contained some nonter-
minating resource sections, the verification usually exited faster under
the local nontermination configuration than under the safety configura-
tion, which means that once a nonterminating section is encountered,
it is checked relatively quickly. Further insight into the comparison
of safety and local nontermination can be seen in Figure 6.8, which
compares sizes of state spaces for these two configurations. Here, we
can see that the overhead in the size of the state space is lower than the
time overhead (less than 10×). The extra time overhead is likely caused
by inefficiencies in DIVINE. For example, when DIVINE nondetermin-
istically chooses from N values, it will re-execute instructions between
the last remembered state and the point of the nondeterministic choice
N times.

Figure 6.9 shows a comparison of local nontermination with global
nontermination and safety with global nontermination. Here, we can
see that global nontermination behaves similarly to safety, with some
time overhead caused by the somewhat more involved algorithm. This
is well in line with our expectations, as global nontermination does not
introduce any extra nondeterminism compared to safety and Tarjan’s
algorithm runs in linear time with respect to the size of the state space,
and so does reachability. This further highlights that the overwhelming
part of the time overhead of local nontermination is in the increase of the
state space size. It is important to note that local nontermination can be
applied to programs which are intended to run infinitely (but have finite
state space) – it can detect if there is a nonterminating resource section
in such a program. As state space sizes and memory consumption
are almost the same for safety and for global nontermination, we omit
memory and state space size comparisons for the later two pairs of
configurations.

Errors Found No errors were found in the C++ Boost tests. On the
other hand, all the errors we artificially implanted in the test cases were
found. As for the errors which were not deliberately introduced in the
tests, we have found one error in a test of a lock-free queue from an older
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Figure 6.9: The first scatter plot compares local nontermination
checking with checking if the whole program terminates (global non-
termination). In this comparison, the red triangles correspond to
benchmarks which did not end, but for which all resource sections
terminated. Finally, in the second graph, we compare global nonter-
mination checking with safety. Here, the red triangles correspond to
benchmarks which did not terminate but were safe. See Figure 6.7 for
the general description of the plot layouts.

[BK08] Baier et al., “Prin-
ciples of Model Checking”.

version of DIVINE. The test was part of DIVINE’s test suite for a long
time and was used to test that the queue works when it is continuously
fed with elements while keeping its size bounded. This means that the
test was deliberately nonterminating and the intention was that all the
operations executed by main loops of the test’s two threads terminate,
which was not the case – a variable which was supposed to keep track
of the size of the queue was not maintained properly, and therefore it
could have happened that the reader thread would wait indefinitely,
attempting to read from an empty queue which would never fill up. So
far, the test case was run under DIVINE with the safety algorithm only,
therefore, the error did not manifest and remained undetected.

6.6 Related Work

For the related work, we consider only results which go beyond safety
checking. There are many approaches to find problems such as assertion
violations or memory safety violations, but they are often fundamentally
limited to properties concerning finite runs of the program, and we
are focusing here on an infinite behaviour, namely on the absence of
termination. Similarly, we do not explore in depth techniques which
specialise on checking sequential programs and have no support for par-
allelism, as well as techniques which are tailored to a specific modelling
language and cannot be applied in general.

Several techniques for checking properties other than safety exist
– indeed usage of various temporal logics, such as Linear Temporal
Logic (LTL) [BK08, Chapter 5] and Computation Tree Logic (CTL)
[BK08, Chapter 6] in the context of model checking dates way back
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to the beginning of the research of formal methods. Unfortunately,
these techniques are not often applied to programs written in real-world
programming languages such as C and C++.

As for techniques which detect nontermination, both static and
dynamic techniques exist for the detection of deadlocks caused by
circular waiting for mutexes [CC14; Aga+10; BH05]. These techniques
specialise on mutexes and do not allow general nontermination detection,
and it is unlikely that they could be naturally extended to cover it.
Some methods detect deadlocks of the whole program (i.e., a program
state from which the program cannot move) [Cha+05; DIS99], but
these techniques cannot find cases in which only some threads of the
program are making progress, while other threads are blocked forever.
Also, these global deadlock detection techniques are inadequate in
the presence of synchronisation mechanisms which causes busy waiting
instead of blocking (for example spin locks) or in the cases when normally
blocking operations are implemented using busy waiting (which can be
easier to handle for the verifier in some cases). A somewhat different
approach based on communicating channels is proposed in [NY16],
but this approach is aiming at the Go programming language which
primarily uses shared channels for communication between threads.
Overall, neither of these techniques is applicable in general for the
detection of nontermination in programs which use a combination of
synchronisation primitives in shared memory. There are also techniques
for checking termination of sequential programs [CPR06; BCDO06;
DHLP15; Bro+16; Hen+17; Gie+17] and techniques for termination
analysis in parallel programs that target modelling languages [KF14;
AFGM17].

A more realistically-targeted termination checker for parallel pro-
grams is presented in [CPR07]. Its primary goal is to show a given thread
terminates. It abstracts other threads into a model of the environment
which is incrementally refined and attempts to prove termination of the
thread locally. It appears to support C programs, but it assumes the
number of threads is fixed and it does not support synchronisation with
mutexes and similar primitives. Another tool for termination-checking
parallel C programs is presented in [PR12], it is similar to [CPR07]
but more general. It uses transition invariants and well-foundedness
to prove termination of whole programs or individual threads and uses
predicate abstraction and refinement. The downside of this approach is
that it can report unfair paths as termination counterexamples.

Probably the closes relative to our approach is shown in [ABEL12].
It presents a tool MUTANT that can detect fair nontermination. It
aims to identify ultimately periodic executions (i.e., executions in which
the same sequence of states is repeated, this sequence can be preceded
by a finite stem) and therefore is complete only in programs with finite
state space. Furthermore, the number of context switches in the stem
and each of the periods is bounded. The tool uses sequentialisation –
it reduces the problem of (context-bounded) termination checking of
a parallel program to assertion checking in a sequential program. It
does not target any realistic programming language; however, it targets
the Boogie modelling language for which translators from C and other
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languages exist. Therefore, it might be possible to use this tool even
for C and other programming languages. The main difference between
our approach and the one in [ABEL12] is that our approach uses a
different notion of fairness, targets primarily C and C++, does not
impose any limits on the number of context switches, and can detect
local nontermination.

6.7 Conclusion

We have presented a novel approach to detection of parts of real-world
programs written in C and C++ which do not terminate. Our method
allows for detection of partial deadlocks (and livelocks) caused by misuse
of synchronisation, but it is not limited to any particular mode of
parallel programming (such as lock-based synchronisation, or programs
with communication channels) and indeed allows any combination of
synchronisation allowed by C++ itself. To achieve this, it is necessary
to provide simple annotations for parts of the code which are to be
checked for termination. Our implementation in the DIVINE model
checker ships with these annotations already prepared for verification of
programs which use C++ blocking synchronisation primitives (mutexes,
condition variables), or similar synchronisation primitives from the
POSIX threads library (pthreads). Due to the universality of these
synchronisation primitives, our annotations allow for checking of most
programs which use blocking synchronisation out of the box. For lock-
free programs, or custom synchronization primitives, users have to
annotate functions or blocks of code which are required to be exited
once they were entered.

We have implemented our technique in an open-source model checker
DIVINE and evaluated it on a set of benchmarks including our tests
of the Thread library from widely used C++ Boost. The evaluation
shows that while the time overhead of local nontermination checking
can be quite significant (up to 59× compared to safety checking on
our benchmarks), the memory overhead is quite modest (under 3×).
During the evaluation, we have discovered a hidden bug that remained
in the code for a couple of years, even though the code was subject to
intensive safety checking.

Our technique enables checking nontermination in parallel programs,
including detection of partial deadlocks and livelocks. It also supports
detection of cases when infinitely-running programs contain sections
which are supposed to terminate but do not terminate. We believe
that even the overhead shown in our evaluation is worth paying for the
additional guarantees over safety checking. While related to verification
of properties written in temporal logics such as CTL*, our technique
cannot be subsumed into CTL* verification, as CTL* cannot quantify
over objects which can be created while the program runs.

For future work, it is crucial to further investigate interactions
between nontermination checking and relaxed memory, and nonter-
mination and symbolic data representation, as the presence of either
of these features can lead to programs being reported as terminating
even if they are not in the current situation. Nevertheless, even in
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the presence of relaxed memory or symbolic data, any reported non-
terminating section of the program is indeed a case when the program
cannot proceed past the given point. We would also like to investigate
better algorithms for detection of local nontermination that might avoid
adding nondeterminism to the program under analysis.
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Chapter 7

Conclusion

In this work, we have introduced the problem of analysis of parallel C++
programs and more generally of analysis of parallel programs written
in real-world programming languages. We have focused on the analysis
techniques that can help programmers to discover hard-to-find bugs
(caused by thread interaction or other problems such as mishandling
of memory). Furthermore, we have aimed at techniques that can
be realistically used by programmers (i.e., do not require a separate
modelling effort before the analysis). We have performed a review of
the state of the art in the area of analysis of parallel programs written
in realistic programming languages and contributed to it in three main
areas. First, in Chapter 4, we took a look at the problem of analysis of
programs in a high-level programming language (C++ in our case), in
particular, we focused on the addition of support for C++ exceptions
to the DIVINE model checker. Second, in Chapter 5, we proposed a
novel technique for analysis of programs under the relaxed memory
model of x86-64 processors. Finally, in Chapter 6, we proposed an
automatic technique for finding parts of a finite-state parallel program
which should terminate but do not terminate. Overall, we believe our
contributions improve on the state of the art in the analysis of parallel
programs and offer utility to both researchers as well as developers.

7.1 Contributions

Language Support In the area of language support, we have shown
that reuse of existing libraries (which are not designed with program
analysis in mind) is a valid option that can both save effort and improve
analysis fidelity. In particular, we have focused on the case of exception
support for C++, and we have devised a solution which allows us to
reuse existing exception-handling code from the C++ standard library
implementation. This approach required only minimal modifications
of the DIVINE verifier and a small new library which implements
platform-specific stack unwinding routines for DIVINE and is linked to
the analysed program. These results contrast with a previous attempt
to support exceptions in an older version of DIVINE that required more
complex changes to the core of the verifier and had to re-implement
exception matching. We have also shown that our solution can handle
cases which were supported correctly in neither the older DIVINE nor
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ESBMC, which is one of the few other tools with reasonable support for
C++ exceptions. While the core of the work presented in this chapter
is about C++ exceptions, we believe its message is more general, and
reuse of existing libraries is a valid approach for extension of language
support in program analysis tools. Indeed, DIVINE reuses the entire
C++ standard library with only minor modifications, and its C standard
library is also in large part reused.

Relaxed Memory In the area of analysis of programs running under
relaxed memory models, we have proposed a novel operational semantics
for the x86-TSO memory model of common Intel and AMD x86-64
processors. This operational semantics allows us to lower the amount of
nondeterminism introduced by the simulation of relaxed behaviour, and
therefore, it reduces the overall complexity of program analysis. The
crucial idea behind this method is that it moves the nondeterminism to
the load (and fence) operations. This delayed nondeterminism allows
us to reduce the number of redundant runs that are simulated. Our
technique can impose bounds on the number of operations that can
be delayed by each thread, in which case it can be applied to any
program which has finite state space under sequential consistency. It
can also forego the buffer bound, in which case it might not terminate
for programs which do not terminate even if they have finite state space
under sequential consistency.

Local Nontermination The final area of our work was checking non-
termination in parallel programs. We have devised a method based on
state-space exploration that can prove termination or nontermination of
programs with finite state space. This approach is significantly different
from most existing methods for proving termination or nontermination.
These methods usually focus on sequential programs or, in the rare case
they support parallel programs, they typically focus on thread-modular
proofs, i.e., proofs that perform reasoning on each thread separately
while abstracting the other threads. While this allows these competing
techniques to support programs with possibly infinite state spaces, it
also makes them more complex, which is witnessed by the fact that
tools which implement these techniques for programming languages and
support parallelism are rare. In our work, we have therefore limited
ourselves to programs with finite state space – our analysis procedure
will not stop if the state space is infinite unless it happens to find an
error with a finite witness. However, our technique is reasonably simple
to implement and can be readily applied to C and C++ programs.
On top of that, our technique can detect local nontermination; i.e., it
can detect that a part of the program which is supposed to terminate
does not. Such parts can include a critical section or a function of a
thread-safe data structure, for example, a pop operation of a queue.
This ability makes our technique useful for analysis of event loops
and similar constructs that can run without termination but dispatch
procedures that must terminate.
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[LRB18] Lauko et al., “Sym-
bolic Computation via
Program Transformation”.

Implementation and Evaluation The three main contributions
presented in this thesis are accompanied by an open-source implemen-
tation in the DIVINE model checker and are evaluated.

7.2 Future Work

Both the program analysis methods and the programming languages
they are targeting are under steady development. We will now shortly
focus on some of the directions which could improve on the results
presented in this thesis.

Language Support The C++ language support in DIVINE is mostly
complete for the C++17 standard. With the soon-to-be-released C++20
standard, we expect that most of the support will be covered by updates
of clang compiler and the C++ standard library we reuse, and therefore
will require little effort from the DIVINE developers. A more ambitious
future work would be the addition of support of other programming
languages to DIVINE. Currently, DIVINE supports C and C++, but
there are many other languages which can be compiled to LLVM, and
therefore it should be possible to integrate them with DIVINE. Such
an addition would have two important consequences. First, it would
either provide further validation to the general approach of component
reuse in program analysis or discover some of its possible limitations.
Second, it would extend the number of programs in which DIVINE can
discover problems.

Finally, one of the missing features of DIVINE concerning C++ is
support for the C++ relaxed memory model.

Relaxed Memory There are three main directions in which future
work on relaxed memory in DIVINE could continue. First, it would be
useful to perform a new comprehensive evaluation which would compare
our method with recent methods build on stateless model checking that
appeared around the time of publication of our approach or after it.
Such an evaluation would shed further light on the promises of stateless
and explicit-state model checking and could inform the further general
approach to the analysis of relaxed memory models in our tool.

Second, if our approach continues to hold promises compared to
the new developments by other researches, or if it can be extended to
at least match them, it remains to be seen how it can be extended to
more relaxed memory models, for example, the ARM memory model or
the memory model of C++. These memory models are more complex
both in the sense that the number of possible executions under them
is higher, which worsens the state space explosion problem and in the
sense that the behaviour itself is more complex which makes it harder
to simulate them.

Finally, it remains to be seen if the program transformation used
in our x86-TSO support can be efficiently combined with the program
transformation that introduces symbolic and abstract data as presented
in [LRB18], without the need to integrate the two transformations
tightly.

http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02508-3_17
http://dx.doi.org/10.1007/978-3-030-02508-3_17


112 | CONCLUSION

Termination Checking Termination checking of parallel programs
is a topic which is not widely explored thus far, at least compared to the
area of relaxed memory models or termination checking of sequential
programs. Some of the areas in which our method could be extended are
apparent from its current limitations – the future work should include
integration with analysis under the x86-TSO memory model and analysis
of programs with symbolic (or abstract) data. It is also likely that a
more efficient algorithm for detection of local nontermination can be
devised.

Further research area would be to investigate the practical perfor-
mance difference between our method and the existing methods based
mostly on thread-modular proofs and well-founded relations. Currently,
we have a hypothesis that our method would offer advantages in cases
where the complexity of the program arises mainly from thread interac-
tions, while the thread-modular approaches would handle programs with
complex data manipulations better. After that, it might be interesting
to investigate possibilities to combine our method with existing research
in this area. For example, it might be possible to use our method to
discover potential nontermination in abstracted state space and then
use arguments based on well-foundedness to attempt to validate the
counterexample and refine the abstraction.
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Appendix A

Published Papers

In this appendix, I summarize my publication results in the field of
program analysis. For my most important papers, I also include a
short description of the paper and a description of my contribution to
the paper. The remainder of papers are mostly either older papers to
which I have contributed less or short report papers for the Software
Verification Competition (SV-COMP [Bey20]).

A.1 Most Significant Papers

Local Nontermination Detection for Parallel C++ Pro-
grams

In this paper, we present our approach to ensuring that parallel programs
do not hang or wait indefinitely – i.e., there are no deadlocks, livelocks,
and the program proceeds towards its goals. The paper contains the
theoretical description of our approach and evaluation of our publicly
available implementation.

My Contribution: The algorithm design, implementation and writ-
ing of the paper was done by me, my advisor Jiří Barnat helped by
consulting the theory with me and proofreading the paper. I have
presented this paper on the SEFM 2019 conference. 90%

Vladimír Štill and Jiří Barnat. “Local Nontermination Detection for
Parallel C++ Programs”. In: Software Engineering and Formal Methods.
Cham: Springer International Publishing, 2019, pp. 373–390. isbn:
978-3-030-30446-1. doi: 10.1007/978-3-030-30446-1_20. url:
https://divine.fi.muni.cz/2019/lnterm [ŠB19]

Model Checking of C++ Programs Under the x86-TSO
Memory Model

Here we present a novel approach to verification of parallel programs
with respect to the memory model of Intel processors. The approach
improves the efficiency of explicit-state model checking by decreas-
ing amount of nondeterminism in the program. The paper contains
evaluation and is accompanied by a publicly available implementation.

My Contribution: The algorithm design, implementation and writing
of the paper was done by me, Jiří Barnat helped by consulting the
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theory with me and proofreading the paper. I have presented this paper
on the ICFEM 2018 conference. 90%

Vladimír Štill and Jiří Barnat. “Model Checking of C++ Programs
Under the x86-TSO Memory Model”. In: Formal Methods and Software
Engineering. Cham: Springer International Publishing, 2018, pp. 124–
140. isbn: 978-3-030-02450-5. doi: 10.1007/978-3-030-02450-5_8.
url: https://divine.fi.muni.cz/2018/x86tso [ŠB18]

Using Off-the-Shelf Exception Support Components in
C++ Verification

In this paper, we present an extension of DIVINE that allows it to
verify programs that contain C++ exceptions and C programs with a
non-local transfer of control flow (setjmp/longjmp). We show that with
careful design, we can successfully reuse exception handling code from
the standard C++ library. The result is that virtually any exception
handling constructs working in the standard C++ are now available in
DIVINE.

My Contribution: I have designed the exception support for DIVINE
4, implemented it and performed the evaluation for this paper. I have
also written most of the text for the paper. Petr Ročkai and Jiří Barnat
helped by consulting the design and implementation and also helped
with the paper text. I have presented this paper on the QRS 2017
conference. The paper and its presentation were awarded the best paper
award. 75%

Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Using Off-the-Shelf
Exception Support Components in C++ Verification”. In: IEEE In-
ternational Conference on Software Quality, Reliability and Security
(QRS). July 2017, pp. 54–64. doi: 10.1109/QRS.2017.15. url:
https://divine.fi.muni.cz/2017/exceptions/ [ŠRB17]

Model Checking of C and C++ with DIVINE 4

In this tool paper, we describe the overall architecture of DIVINE 4 and
changes in the tool compared to DIVINE 3. Most significantly, this pa-
per describes the modular nature of DIVINE: DIVINE 4 is built around
an efficient interpreter which, together with a small, verification-oriented
operating system and a set of runtime libraries, enables verification of
real-world code written in C and C++.

My Contribution: The text of the paper is written mostly by me,
with additions and proofreading by Petr Ročkai and Jiří Barnat. The
architecture design was mostly due to Petr Ročkai, with additions
by me and Jan Mrázek. The implementation includes code by all
the co-authors with most significant contributions by (in the order of
significance) Petr Ročkai, me, and Jan Mrázek. 30%

Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš Kučera, Hen-
rich Lauko, Jan Mrázek, Petr Ročkai, and Vladimír Štill. “Model Check-
ing of C and C++ with DIVINE 4”. In: International Symposium on
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Automated Technology for Verification and Analysis (ATVA). vol. 10482.
Lecture Notes in Computer Science. 2017. doi: 10.1007/978-3-
319 - 68167 - 2 _ 14. url: https : / / divine . fi . muni . cz / 2017 /
divine4/ [Bar+17]

DiVM: Model Checking with LLVM and Graph Memory

This paper introduces the concept of a virtual machine with graph
memory as a core component for explicit-state and abstraction-based
verification of software. The paper is accompanied by an implementation
of the virtual machine which runs LLVM IR (which can be obtained from
C or C++ using the clang compiler) and an evaluation which compares
the new approach to a more traditional design of an LLVM-based model
checker as well as a symbolic model checker.

My Contribution: The primary author of this paper is Petr Ročkai.
My contribution concerned mostly the C++ support (including program
compilation and libraries) and the evaluation and comparison of the
new approach with DIVINE 3 and ESBMC. 20%

Petr Ročkai, Vladimír Štill, Ivana Černá, and Jiří Barnat. “DiVM:
Model checking with LLVM and graph memory”. In: Journal of Systems
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